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Graph: definition

Definition

A graph Gis a tuple (V, E) of vertices V and a collection of edges E.
Each edge e € E is said to connect two vertices u,v € V, and is
denoted as e = (u, V).

Notations: V(G), E(G).
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Graph: definition

Definition

A graph Gis a tuple (V, E) of vertices V and a collection of edges E.
Each edge e € E is said to connect two vertices u,v € V, and is
denoted as e = (u, V).

Notations: V(G), E(G).

Definition
The complement G of a graph G, has the same vertex set as G, but

ec E(G) ifandonly ife ¢ E(G).

Definition
For any graph G and vertex v € V(G), the neighbor set N(v) of v is the
set of vertices (other than v) adjacent to v:

N(v)={we V(G) | v#w,(v,w)c E(G)}




2.1 Formalities

Foundations

Graph: Example
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Vertex degree

Definition

The number of edges incident with a vertex v is called the degree of v,
denoted as 6(v). Loops, i.e., edges joining a vertex with itself, are
counted twice.
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Vertex degree

Definition

The number of edges incident with a vertex v is called the degree of v,
denoted as 6(v). Loops, i.e., edges joining a vertex with itself, are
counted twice.

For all graphs G, ¥.ycv(g)0(v) is2-|E(G)|.

When we count the edges of a graph G by enumerating the edges
incident with each vertex of G, we are counting each edge exactly
twice.



Degree sequence

Definition

An (ordered) degree sequence is an (ordered) list of the degrees of the
vertices of a graph. A degree sequence is graphic if there is a (simple)
graph with that sequence.
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assume k > d; > dj1.)




Degree sequence

Definition

An (ordered) degree sequence is an (ordered) list of the degrees of the
vertices of a graph. A degree sequence is graphic if there is a (simple)
graph with that sequence.

Theorem (Havel-Hakimi)
An ordered degree sequence s = |k,d,db,...,dy_1] is graphic, if and
onlyifs*=[dy—1,db—1,...,0d—1,dky1,...,d_1] is also graphic. (We
assume k > d; > dj1.)

Note
Length s = n, but length s* =n—1.




s* = s: Example

Take k = 3 and consider graph with sequence [4,4,3,3,2]. Create
graph with sequence [3,5,5,4,3,2] = [5,5,4,3.3,2]:

@ Starting condition
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s* = s: Example

Take k = 3 and consider graph with sequence [4,4,3,3,2]. Create
graph with sequence [3,5,5,4,3,2] = [5,5,4,3.3,2]:
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s* = s: Example

Take k = 3 and consider graph with sequence [4,4,3,3,2]. Create
graph with sequence [3,5,5,4,3,2] = [5,5,4,3.3,2]:

@ Starting condition

@ Add a vertex v with degree 6(v) = k
© Connect v to k vertices with highest degrees.



s = s*: Example

Consider the following graph with sequence [4,4,3,3,3,3,2,2]. Let
o(u) =4 (in red) and consider V = {vq, vo, v3, V4 } as next highest
degrees (in blue), and W = {wy, wso, w3} the rest (in black).

N

@ Starting condition
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s = s*: Example

Consider the following graph with sequence [4,4,3,3,3,3,2,2]. Let
o(u) =4 (in red) and consider V = {vq, vo, v3, V4 } as next highest
degrees (in blue), and W = {wy, ws, ws} the rest (in black).

e

@ Starting condition

© Remove u. Because u is connected only to vertices from V, we
know that s* =[3,2,2,2,3,2,2] = [3,3,2,2,2,2,2]
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s = s*: Example

Consider the following graph with sequence [4,4,3,3,3,3,2,2]. Let
0(u) =4 (in red) and consider V = {vy, v», v3, 4} as next highest
degrees (in blue), and W = {wq, wo, ws} the rest (in black).

N

@ Starting condition
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s = s*: Example

Consider the following graph with sequence [4,4,3,3,3,3,2,2]. Let
0(u) =4 (in red) and consider V = {vy, v», v3, 4} as next highest
degrees (in blue), and W = {wq, wo, ws} the rest (in black).

A W

@ Starting condition

© Remove u. Because u is not connected only to vertices from V,
we have a problem: s* =[3,3,3,2,2,2,1].



s = s*: Example

@ Problem: v is linked to a w but not to a v;, with §(w) < 6(v;). But
because 6(w) < §(v;), there exists x adjacent to v; but not to w.
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s = s*: Example

PV

@ Problem: v is linked to a w but not to a v;, with §(w) < 6(v;). But
because 6(w) < §(v;), there exists x adjacent to v; but not to w.

@ Remove (u,w) and (v}, x).
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s = s*: Example

=7 A

@ Problem: v is linked to a w but not to a v;, with §(w) < 6(v;). But
because 6(w) < §(v;), there exists x adjacent to v; but not to w.

@ Remove (u,w) and (v;,x).
© Add (x,w) and (u,v))
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s = s*: Example

PV

@ Problem: v is linked to a w but not to a v;, with §(w) < 6(v;). But
because 6(w) < §(v;), there exists x adjacent to v; but not to w.

@ Remove (u,w) and (v;,x).
© Add (x,w) and (u,v))

\

What should we do if u was linked to a w with §(w) = 6(v;)?



Subgraphs

Definition

H is a subgraph of G if V( ) C V(G) and E(H) C E(G) such that for all
ec E(H) with e= cu,ve V(H

ok
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Subgraphs

Definition

H is a subgraph of G if V( ) C V(G) and E(H) C E(G) such that for all
ec E(H) with e= cu,ve V(H

ok

Definition

The subgraph induced by V* C V(G) has vertex set V* and edge set
{{v,w) € E(G)|v,w € V*}. Denoted as H = G[V*]. The subgraph
induced by E* C E(G) has vertex set V(G) and edge set E*. Denoted
as H= G[E"].

10/31



Foundations 2.2 Graph representations

Adjacency matrix

‘ Vi Vo V3 Wy
il 2 1 1 0
wi1l 0 2 0
|1 2 0 1
w| 0O 0 1 2

Observations

@ Adjacency matrix is symmetric: Ali,j] = AlJ, i].
@ Gissimple < A[i,j]<1andA[i,i] =0.
o Vvii Y1 A[i,j] = 8(v)).
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Foundations 2.2 Graph representations

Incidence matrix

|e1 e e e, e es e
v 2 1 1 0 0 0 0
w0 1 0 0 1 1 0
v, 0 0 1 1 1 1 0
w| |0 0 0 1 0 0 2

Observations

@ Gis simple only if M[i,j] <1
® Wi X M[i,f] = 8(v)).
o Ve YL M[ij]=2.
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Graph isomorphism

Definition

Gi and Gy are isomorphic if there exists a one-to-one mapping

¢ : Vi — V5 such that for each edge e € Ey with e; = (v, u) there is a
unique edge e € E; with ex = (¢(v), ¢(u)).

13/31



Connectivity: definitions

Definition

A (vg,vgk)-walk is a sequence [vy, €1, Vy,€2,...,Vk_1, €k, V] With
e = (vi_1,v;). Atrail is a walk with distinct edges; a path is a trail with
distinct vertices. A cycle is a trail with distinct vertices except vy = k.
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Connectivity: definitions

Definition

A (vg,vgk)-walk is a sequence [vy, €1, Vy,€2,...,Vk_1, €k, V] With
e = (vi_1,v;). Atrail is a walk with distinct edges; a path is a trail with
distinct vertices. A cycle is a trail with distinct vertices except vy = k.

Definition
Vertices u # v in G are connected if there is a (u,v) — pathin G. G is
connected if all pairs of distinct vertices are connected.

Definition

H C Gis a component of G if H is connected and not contained in a
connected subgraph of G with more vertices or edges. The number of
components of G is o(G).

14/31



Connectivity and robustness

Important

Connectivity indicates whether all nodes in a network can be reached
from any other node.
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Communication networks, like the Internet, require to be connected,
and have been designed to stay connected, even when under attack.
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Foundations 2.3 Connectivity

Connectivity and robustness

Important

Connectivity indicates whether all nodes in a network can be reached
from any other node.

Communication networks, like the Internet, require to be connected,
and have been designed to stay connected, even when under attack.

Definition

Foragraph Glet V* C V(G) and E* C E(G). If o(G— V*) > o(G) then

V* is called a vertex cut. If o(G— E*) > o(G) then E* is called an
edge cut.

15/31



Minimal cuts

For reasons of robustness, we're interested in finding the minimal
number of vertices or edges to remove before a graph falls apart.

@ k(@) is the size of a minimal vertex cut for G
@ A(G) is the size of a minimal edge cut
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Minimal cuts

For reasons of robustness, we're interested in finding the minimal
number of vertices or edges to remove before a graph falls apart.

@ k(@) is the size of a minimal vertex cut for G
@ A(G) is the size of a minimal edge cut

K(G) <A(G) <minycyg{6(v)}
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K(G) < A(G) < minycy(G){6(v)}

A(G) <minycyg{6(v)} Let uhave minimal degree =- remove the
edges incident with it and u becomes isolated.
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K(G) < A(G) < minycy(G){6(v)}

A(G) <minycyg{6(v)} Let uhave minimal degree =- remove the
edges incident with it and v becomes isolated.

k(G) < 2(G) Let E* = {{u1,v4), (U, V2),...., (Uk, Vi) } be an edge cut,
with k = A(G) = G — E* falls into exactly two components Gy and
Go (why?).
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K(G) < A(G) < minycy(G){6(v)}

A(G) <minycyg{6(v)} Let uhave minimal degree =- remove the
edges incident with it and v becomes isolated.
k(G) < A(G) Let E* = {{u1,v1), (U2, Va)...., (Uk, Vi) } be an edge cut,
with k = A(G) = G — E* falls into exactly two components Gy and
Go (why?).
@ Assume there exists u € V(Gy)\{ut,...,ux}. This means that
{uy,...,ux} is a vertex cut = k(G) < k.

17/31



k(G) < A(G) < min,cy(6){8(v)} (cntd)

Otherwise, assume V(Gj) = {uy,...,ux} and consider vertex uy.

@ u; is adjacent to d; vertices N;(uq) from
V(Gy) and d, vertices Na(uy) from
V(Gy). 1l

@ Each u; € Ny(uy) is adjacent to a vertex
from V(Gy).

@ Let
Ef ={(u,v) € E*luc Ny(uq),ve V(Go)}
E; ={(u1,v) € E*|v e Na(ur)}

® di+ b <|Ej[+ o <|Ef[+|E;| < |E"|=
A(G).

@ Ny(u1)UNo(uy) is a vertex cut with
d, + d vertices.

E *
12

G2
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Foundations 2.3 Connectivity

What does it take to be connected?

Definition
If x(G) > k for some k, then G is called k-connected.

G is k-connected = Vv : 8(v) > k
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Foundations 2.3 Connectivity

What does it take to be connected?

Definition
If x(G) > k for some k, then G is called k-connected.

G is k-connected = Vv : 8(v) > k

Issue

Can we construct a k-connected graph Hy , with n vertices and a
minimal number of edges?

19/31



Harary graphs

k is even: Organize vertices V ={0,1,...,n—1} into a “circle.”
Connect vertex i to its k/2 left-hand (clockwise) neighbors and to
its k/2 right-hand (counter clockwise) neighbors.
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Harary graphs

k is even: Organize vertices V ={0,1,...,n—1} into a “circle.”
Connect vertex i to its k/2 left-hand (clockwise) neighbors and to
its k/2 right-hand (counter clockwise) neighbors.

k is odd, n is even: Construct Hy_4 , and add edges
0,9, 1,1+D),....(%52,n-1).

20/31



Harary graphs

k is odd, nis odd: Construct Hx_1 , and add edges
(0,213, (1,1 + 251y, (251 n—1).
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Harary graphs

k is odd, nis odd: Construct Hx_1 , and add edges
(0,213, (1,1 + 251y, (251 n—1).
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Menger’s theorem

Definition

Let #(u,v) be a collection of paths between vertices u and v.
Vertex independent: VP,Q € Z(u,v): V(P)NV(Q) ={u,v}.
Edge independent: VP,Q € Z(u,v): E(P)NE(Q) =0.
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Menger’s theorem

Definition

Let #(u,v) be a collection of paths between vertices u and v.
Vertex independent: VP,Q € Z(u,v): V(P)NV(Q) ={u,v}.
Edge independent: VP,Q € Z(u,v): E(P)NE(Q) =0.

| \

Theorem (Menger)

Let G be a graph with two nonadjacent vertices u and v. The minimum
number of vertices in a vertex cut that disconnects u and v is equal to
the maximum number of pairwise vertex-independent paths between u
to v. The minimum number of edges in an edge cut that disconnects u
and v, is equal to the maximum number of pairwise edge-independent
paths betweeen u and v.

22/31



Foundations 2.3 Connectivity

Menger’s theorem

Mathematical language

Menger’s theorem should be read carefully: it mentions pairwise
independent paths. In this case, the adjective pairwise is used to make
clear that we should always consider pairs of paths when considering
independence. And indeed, this makes sense when you would
consider trying to count the number of independent paths: being an
independent path can only be relative to another path.

To complete the story, also note that the theorem is all about counting
the number of (u, v)-paths, and not the number of pairs of such paths.
In other words, pairwise is an adjective to independent, and not to
paths.

23/31



Corollaries

@ G is k-connected iff any two distinct vertices are connected by at
least k vertex-independent paths.

@ G is k-edge connected iff any two distinct vertices are connected
by at least k edge-independent paths.

Each edge of a 2-edge-connected graph lies on a cycle.

24 /31



Drawing graphs

Observation

It is important to see how you draw a graph, that is, to consider its
graph embedding.

o T =

25/31



Circular embedding
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Ranked embedding

Definition

G is bipartite if V(G) = VUV, and Vi N Vo =0 such that
E(G) € {{u1,u2)|uy € Vi,Up € Vo}.

@ Consider bipartite graph G and vertex v € V(G)

Q Let Nj(v)={v}

@ Let Nj(v) = Ni_,(v)U{x e N(y)ly € Ni_,(v)}.k > 1

Q Ni(v)=Ni(v)—N;_,(v)

© Draw vertices from Ni(v) on the same vertical line, and vertices
from Nk_1(v) below (or above) those of Nk (V).

27/31



Ranked embedding
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Spring embedding
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Planar graphs

Definition

A graph is planar if there exists an embedding in the 2D plane such
that no two edges cross. A plane graph is a drawing of a planar graph
such that no two edges intersect.
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Planar graphs

Definition

A graph is planar if there exists an embedding in the 2D plane such

that no two edges cross. A plane graph is a drawing of a planar graph
such that no two edges intersect.

" ’ u Theorem (Euler’s formula)
° For a plane graph with n
o vertices, m edges, and r

regions: n—m+r = 2.
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Planar graphs: properties

For any connected simple planar graph with n > 3 vertices and m
edges: m<3n—6
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Planar graphs: properties

For any connected simple planar graph with n > 3 vertices and m
edges: m<3n—6

@ Consider region f in a plane graph of G

@ V interior regions: B(f) denotes number of edges enclosing f.
Note: B(f) > 3.

@ n > 3 = exterior region bounded by at least 3 edges.

@ rregions = Y B(f) > 3r

@ Y B(f) counts edges once or twice = Y. B(f) <2m

@ 3r<yB(f)<2m=m=n+r-2<n+im-2=
m<3n—6

31/31
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