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Foundations 2.1 Formalities

Graph: definition

Definition
A graph G is a tuple (V ,E) of vertices V and a collection of edges E .
Each edge e ∈ E is said to connect two vertices u,v ∈ V , and is
denoted as e = 〈u,v〉.
Notations: V (G), E(G).

Definition

The complement G of a graph G, has the same vertex set as G, but
e ∈ E(G) if and only if e 6∈ E(G).

Definition
For any graph G and vertex v ∈ V (G), the neighbor set N(v) of v is the
set of vertices (other than v ) adjacent to v :

N(v) = {w ∈ V (G) | v 6= w ,〈v ,w〉 ∈ E(G)}
2 / 31
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Foundations 2.1 Formalities

Graph: Example
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V (G) = {v1, . . . ,v8}
E(G) = {e1, . . . ,e18}
e1 = 〈v1,v2〉 e10 = 〈v6,v7〉
e2 = 〈v1,v5〉 e11 = 〈v5,v7〉
e3 = 〈v2,v8〉 e12 = 〈v6,v8〉
e4 = 〈v3,v5〉 e13 = 〈v4,v7〉
e5 = 〈v3,v4〉 e14 = 〈v7,v8〉
e6 = 〈v4,v5〉 e15 = 〈v4,v8〉
e7 = 〈v5,v6〉 e16 = 〈v2,v3〉
e8 = 〈v2,v5〉 e17 = 〈v1,v7〉
e9 = 〈v1,v6〉 e18 = 〈v5,v8〉

Question
What is the neighborset of v6?
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Foundations 2.1 Formalities

Vertex degree

Definition
The number of edges incident with a vertex v is called the degree of v ,
denoted as δ (v). Loops, i.e., edges joining a vertex with itself, are
counted twice.

Theorem
For all graphs G, ∑v∈V (G) δ (v) is 2 · |E(G)|.

Proof
When we count the edges of a graph G by enumerating the edges
incident with each vertex of G, we are counting each edge exactly
twice.
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Foundations 2.1 Formalities

Degree sequence

Definition
An (ordered) degree sequence is an (ordered) list of the degrees of the
vertices of a graph. A degree sequence is graphic if there is a (simple)
graph with that sequence.

Theorem (Havel-Hakimi)
An ordered degree sequence s = [k ,d1,d2, . . . ,dn−1] is graphic, if and
only if s∗ = [d1−1,d2−1, . . . ,dk −1,dk+1, . . . ,dn−1] is also graphic. (We
assume k ≥ di ≥ di+1.)

Note
Length s = n, but length s∗ = n−1.

5 / 31
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Foundations 2.1 Formalities

s∗⇒ s: Example

Take k = 3 and consider graph with sequence [4,4,3,3,2]. Create
graph with sequence [3,5,5,4,3,2]≡ [5,5,4,3,3,2]:

1 Starting condition
2 Add a vertex v with degree δ (v) = k
3 Connect v to k vertices with highest degrees.

6 / 31



Foundations 2.1 Formalities

s∗⇒ s: Example

Take k = 3 and consider graph with sequence [4,4,3,3,2]. Create
graph with sequence [3,5,5,4,3,2]≡ [5,5,4,3,3,2]:

1 Starting condition
2 Add a vertex v with degree δ (v) = k
3 Connect v to k vertices with highest degrees.

6 / 31



Foundations 2.1 Formalities

s∗⇒ s: Example

Take k = 3 and consider graph with sequence [4,4,3,3,2]. Create
graph with sequence [3,5,5,4,3,2]≡ [5,5,4,3,3,2]:

1 Starting condition
2 Add a vertex v with degree δ (v) = k
3 Connect v to k vertices with highest degrees.

6 / 31



Foundations 2.1 Formalities

s⇒ s∗: Example

Consider the following graph with sequence [4,4,3,3,3,3,2,2]. Let
δ (u) = 4 (in red) and consider V = {v1,v2,v3,v4} as next highest
degrees (in blue), and W = {w1,w2,w3} the rest (in black).

1 Starting condition
2 Remove u. Because u is connected only to vertices from V , we

know that s∗ = [3,2,2,2,3,2,2] = [3,3,2,2,2,2,2]

7 / 31
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Foundations 2.1 Formalities

s⇒ s∗: Example

1 Problem: u is linked to a w but not to a vj , with δ (w)< δ (vj). But
because δ (w)< δ (vj), there exists x adjacent to vj but not to w .

2 Remove 〈u,w〉 and 〈vj ,x〉.
3 Add 〈x ,w〉 and 〈u,vj〉

Question
What should we do if u was linked to a w with δ (w) = δ (vj)?
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Foundations 2.1 Formalities

Subgraphs

Definition
H is a subgraph of G if V (H)⊆ V (G) and E(H)⊆ E(G) such that for all
e ∈ E(H) with e = 〈u,v〉 : u,v ∈ V (H).

Definition
The subgraph induced by V ∗ ⊆ V (G) has vertex set V ∗ and edge set
{〈v ,w〉 ∈ E(G)|v ,w ∈ V ∗}. Denoted as H = G[V ∗]. The subgraph
induced by E∗ ⊆ E(G) has vertex set V (G) and edge set E∗. Denoted
as H = G[E∗].
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Foundations 2.2 Graph representations

Adjacency matrix

v1

v2

v3

v4

e1

e2

e3

e4

e5

e6

e7

v1 v2 v3 v4
v1 2 1 1 0
v2 1 0 2 0
v3 1 2 0 1
v4 0 0 1 2

Observations
Adjacency matrix is symmetric: A[i , j] = A[j , i].
G is simple⇔ A[i , j]≤ 1 and A[i , i] = 0.
∀vi : ∑

n
j=1 A[i , j] = δ (vi).
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Foundations 2.2 Graph representations

Incidence matrix

v1

v2

v3

v4

e1

e2

e3

e4

e5

e6

e7

e1 e2 e3 e4 e5 e6 e7
v1 2 1 1 0 0 0 0
v2 0 1 0 0 1 1 0
v3 0 0 1 1 1 1 0
v4 0 0 0 1 0 0 2

Observations
G is simple only if M[i , j]≤ 1
∀vi : ∑

m
j=1 M[i , j] = δ (vi).

∀ej : ∑
n
i=1 M[i , j] = 2.
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Foundations 2.2 Graph representations

Graph isomorphism

Definition
G1 and G2 are isomorphic if there exists a one-to-one mapping
φ : V1→ V2 such that for each edge e1 ∈ E1 with e1 = 〈v ,u〉 there is a
unique edge e2 ∈ E2 with e2 = 〈φ(v),φ(u)〉.
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Foundations 2.3 Connectivity

Connectivity: definitions

Definition
A (v0,vk)-walk is a sequence [v0,e1,v1,e2, . . . ,vk−1,ek ,vk ] with
ei = 〈vi−1,vi〉. A trail is a walk with distinct edges; a path is a trail with
distinct vertices. A cycle is a trail with distinct vertices except v0 = vk .

Definition
Vertices u 6= v in G are connected if there is a (u,v)−path in G. G is
connected if all pairs of distinct vertices are connected.

Definition
H ⊆G is a component of G if H is connected and not contained in a
connected subgraph of G with more vertices or edges. The number of
components of G is ω(G).

14 / 31
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Foundations 2.3 Connectivity

Connectivity and robustness

Important
Connectivity indicates whether all nodes in a network can be reached
from any other node.

Example
Communication networks, like the Internet, require to be connected,
and have been designed to stay connected, even when under attack.

Definition
For a graph G let V ∗ ⊂ V (G) and E∗ ⊂ E(G). If ω(G−V ∗)> ω(G) then
V ∗ is called a vertex cut. If ω(G−E∗)> ω(G) then E∗ is called an
edge cut.

15 / 31



Foundations 2.3 Connectivity

Connectivity and robustness

Important
Connectivity indicates whether all nodes in a network can be reached
from any other node.

Example
Communication networks, like the Internet, require to be connected,
and have been designed to stay connected, even when under attack.

Definition
For a graph G let V ∗ ⊂ V (G) and E∗ ⊂ E(G). If ω(G−V ∗)> ω(G) then
V ∗ is called a vertex cut. If ω(G−E∗)> ω(G) then E∗ is called an
edge cut.

15 / 31



Foundations 2.3 Connectivity

Connectivity and robustness

Important
Connectivity indicates whether all nodes in a network can be reached
from any other node.

Example
Communication networks, like the Internet, require to be connected,
and have been designed to stay connected, even when under attack.

Definition
For a graph G let V ∗ ⊂ V (G) and E∗ ⊂ E(G). If ω(G−V ∗)> ω(G) then
V ∗ is called a vertex cut. If ω(G−E∗)> ω(G) then E∗ is called an
edge cut.

15 / 31



Foundations 2.3 Connectivity

Minimal cuts

Note
For reasons of robustness, we’re interested in finding the minimal
number of vertices or edges to remove before a graph falls apart.

Notations
κ(G) is the size of a minimal vertex cut for G
λ (G) is the size of a minimal edge cut

Theorem
κ(G)≤ λ (G)≤minv∈V (G){δ (v)}

16 / 31
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Foundations 2.3 Connectivity

κ(G)≤ λ (G)≤minv∈V (G){δ (v)}

λ (G)≤minv∈V (G){δ (v)} Let u have minimal degree⇒ remove the
edges incident with it and u becomes isolated.

κ(G)≤ λ (G) Let E∗ = {〈u1,v1〉,〈u2,v2〉, . . . ,〈uk ,vk 〉} be an edge cut,
with k = λ (G)⇒G−E∗ falls into exactly two components G1 and
G2 (why?).

Assume there exists u ∈ V (G1)\{u1, . . . ,uk}. This means that
{u1, . . . ,uk} is a vertex cut⇒ κ(G)≤ k .

17 / 31
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Foundations 2.3 Connectivity

κ(G)≤ λ (G)≤minv∈V (G){δ (v)} (cnt’d)

Otherwise, assume V (G1) = {u1, . . . ,uk} and consider vertex u1.

u1 is adjacent to d1 vertices N1(u1) from
V (G1) and d2 vertices N2(u1) from
V (G2).
Each ui ∈ N1(u1) is adjacent to a vertex
from V (G2).
Let
E∗1 = {〈u,v〉 ∈ E∗|u ∈ N1(u1),v ∈ V (G2)}
E∗2 = {〈u1,v〉 ∈ E∗|v ∈ N2(u1)}
d1 +d2 ≤ |E∗1 |+d2 ≤ |E∗1 |+ |E∗2 | ≤ |E∗|=
λ (G).
N1(u1)∪N2(u1) is a vertex cut with
d1 +d2 vertices.

u1G1 G2

E*
2

E*
1
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Foundations 2.3 Connectivity

What does it take to be connected?

Definition
If κ(G)≥ k for some k , then G is called k-connected.

Note
G is k-connected⇒∀v : δ (v)≥ k

Issue
Can we construct a k-connected graph Hk ,n with n vertices and a
minimal number of edges?

19 / 31
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Foundations 2.3 Connectivity

Harary graphs

k is even: Organize vertices V = {0,1, . . . ,n−1} into a “circle.”
Connect vertex i to its k/2 left-hand (clockwise) neighbors and to
its k/2 right-hand (counter clockwise) neighbors.

k is odd, n is even: Construct Hk−1,n and add edges
〈0, n

2〉,〈1,1+ n
2〉, . . . ,〈

n−2
2 ,n−1〉.

0

1

2

3

4

5

6

7

H4,8 H5,8
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Foundations 2.3 Connectivity

Menger’s theorem

Definition
Let P(u,v) be a collection of paths between vertices u and v .
Vertex independent: ∀P,Q ∈P(u,v) : V (P)∩V (Q) = {u,v}.
Edge independent: ∀P,Q ∈P(u,v) : E(P)∩E(Q) = /0.

Theorem (Menger)
Let G be a graph with two nonadjacent vertices u and v. The minimum
number of vertices in a vertex cut that disconnects u and v is equal to
the maximum number of pairwise vertex-independent paths between u
to v. The minimum number of edges in an edge cut that disconnects u
and v, is equal to the maximum number of pairwise edge-independent
paths betweeen u and v.
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Foundations 2.3 Connectivity

Menger’s theorem

Mathematical language
Menger’s theorem should be read carefully: it mentions pairwise
independent paths. In this case, the adjective pairwise is used to make
clear that we should always consider pairs of paths when considering
independence. And indeed, this makes sense when you would
consider trying to count the number of independent paths: being an
independent path can only be relative to another path.

To complete the story, also note that the theorem is all about counting
the number of (u,v)-paths, and not the number of pairs of such paths.
In other words, pairwise is an adjective to independent, and not to
paths.
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Foundations 2.3 Connectivity

Corollaries

Corollary
G is k-connected iff any two distinct vertices are connected by at
least k vertex-independent paths.
G is k-edge connected iff any two distinct vertices are connected
by at least k edge-independent paths.

Corollary
Each edge of a 2-edge-connected graph lies on a cycle.
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Foundations 2.4 Drawing graphs

Drawing graphs

Observation
It is important to see how you draw a graph, that is, to consider its
graph embedding.
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Foundations 2.4 Drawing graphs

Circular embedding
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Foundations 2.4 Drawing graphs

Ranked embedding

Definition
G is bipartite if V (G) = V1∪V2 and V1∩V2 = /0 such that
E(G)⊆ {〈u1,u2〉|u1 ∈ V1,u2 ∈ V2}.

1 Consider bipartite graph G and vertex v ∈ V (G)

2 Let N∗0(v) = {v}
3 Let N∗k (v) = N∗k−1(v)∪{x ∈ N(y)|y ∈ N∗k−1(v)},k ≥ 1
4 Nk (v) = N∗k (v)−N∗k−1(v)
5 Draw vertices from Nk (v) on the same vertical line, and vertices

from Nk−1(v) below (or above) those of Nk (v).
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Foundations 2.4 Drawing graphs

Ranked embedding
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Foundations 2.4 Drawing graphs

Spring embedding
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Foundations 2.4 Drawing graphs

Planar graphs

Definition
A graph is planar if there exists an embedding in the 2D plane such
that no two edges cross. A plane graph is a drawing of a planar graph
such that no two edges intersect.

r1

r2

r3

r4r5

r6

r7 r8

r9

r10

r11

r12

Theorem (Euler’s formula)
For a plane graph with n
vertices, m edges, and r
regions: n−m+ r = 2.
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Foundations 2.4 Drawing graphs

Planar graphs: properties

Theorem
For any connected simple planar graph with n ≥ 3 vertices and m
edges: m ≤ 3n−6

Consider region f in a plane graph of G
∀ interior regions: B(f ) denotes number of edges enclosing f .
Note: B(f )≥ 3.
n ≥ 3⇒ exterior region bounded by at least 3 edges.
r regions⇒ ∑B(f )≥ 3r

∑B(f ) counts edges once or twice⇒ ∑B(f )≤ 2m
3r ≤ ∑B(f )≤ 2m⇒m = n+ r −2≤ n+ 2

3m−2⇒
m ≤ 3n−6
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