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Network traversal

Introduction

Algorithms that allow one to (o] § through a network

@ Euler tours: visit every edge exactly once.
@ Hamilton cycles: visit every vertex exactly once.




The Konigsberg problem

Can one walk through the city and cross each of the seven bridges
exactly once?




Network traversal 4.1. Euler tours

Modeling the problem in terms of graphs
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Network traversal 4.1. Euler tours

Euler tours

Definition

A tour of a graph Gis a (u, v)-walk in which u=v (i.e., itis a closed
walk) and that traverses each edge in G. An Euler tour is a tour in
which all edges are traversed exactly once.




Network traversal 4.1. Euler tours

Euler tours

Definition

A tour of a graph Gis a (u, v)-walk in which u=v (i.e., itis a closed
walk) and that traverses each edge in G. An Euler tour is a tour in
which all edges are traversed exactly once.

Related: Chinese postman problem
@ So called because originally formulated by a Chinese
mathematician.

@ Issue: Schedule the round of a postman such that (1) all streets
are passed at least once and (2) the total traveled distance is

minimal.
@ Solution: Extend map of streets to a Eulerian graph with minimal
weight.
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Necessary and sufficient conditions

A connected graph G (with more than one vertex) has an Euler tour iff
it has no vertices of odd degree.

Proof: Euler tour = no odd-degree vertices
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Necessary and sufficient conditions

A connected graph G (with more than one vertex) has an Euler tour iff
it has no vertices of odd degree.

Proof: Euler tour = no odd-degree vertices
@ Let C be an Euler tour starting/ending in vertex v. Let u # v
@ ue V(C), Y{wj,u) € E(C): I (u,wou) € E(C).
@ Every edge is traversed exactly once = unique pairing of edges
(Win, u) and (U, Wout)
@ §(u) must be even.
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@ Select v and construct trail P until you need to cross an edge for
the second time. Let P end in w.
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Necessary and sufficient conditions

Proof: no odd-degree vertices = exists Euler tour

@ Select v and construct trail P until you need to cross an edge for
the second time. Let P end in w.
@ Assume w # v = entered w once more than left it = d(w) is odd.
Contradiction. Hence P must end in v.
@ E(P)= E(G) = done. Assume E(P) C E(G):
e Let ue V(P) be incident with edges not in P. Consider
H= G[E(G)— E(P)].
o Vx € V(P):48(x)iseven=Vx e V(H):5(x)is even.
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Necessary and sufficient conditions

Proof: no odd-degree vertices = exists Euler tour
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Necessary and sufficient conditions

Proof: no odd-degree vertices = exists Euler tour

@ Select v and construct trail P until you need to cross an edge for
the second time. Let P end in w.

@ Assume w # v = entered w once more than left it = d(w) is odd.
Contradiction. Hence P must end in v.
@ E(P)= E(G) = done. Assume E(P) C E(G):
e Let ue V(P) be incident with edges not in P. Consider
H = GIE(G)— E(P)].
o Vx € V(P):48(x)iseven=Vx e V(H):5(x)is even.
e Let u lie in component H' = construct similar largest trail P’
e P+ PUP' and repeat until E(P) = E(G).
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Fleury’s algorithm

Algorithm (Fleury)

Consider an Eulerian graph G.

@ Choose an arbitrary vertex vo € V(G) and set Wy = vp.
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Algorithm (Fleury)

Consider an Eulerian graph G.

@ Choose an arbitrary vertex vo € V(G) and set Wy = vp.

@ Assume that we have constructed a trail
Wy = [vo,€1,V1,€2,Va,..., €k, Vk]. Choose an edge
€x+1 = (Vk, Vkr1) from E(G)\ E(Wy) such that, preferably, ey 1 is
not a cut edge of the induced subgraph Gy, = G — E(Wk).
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Fleury’s algorithm

Algorithm (Fleury)

Consider an Eulerian graph G.

@ Choose an arbitrary vertex vo € V(G) and set Wy = vp.

@ Assume that we have constructed a trail
Wy = [vo,€1,V1,€2,Va,..., €k, Vk]. Choose an edge
exi1 = (Vk, Vkr1) from E(G)\ E(Wy) such that, preferably, ey, 1 is
not a cut edge of the induced subgraph Gy, = G — E(Wk).

© We now have a trail Wy 1. If there is no edge ek, = (Vki1, Vki2)
to select from E(G)\ E(Wk.1), stop. Otherwise, repeat the
previous step.
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Fleury’s algorithm
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Fleury’s algorithm

9 10 1 12
5
5 6 7 8
2 3
1 4 1

27



Network traversal 4.1. Euler tours

Fleury’s algorithm

9 10 1 12
-
5 6 7 8
1 2 3 4 /

27



Network traversal 4.1. Euler tours

Fleury’s algorithm

9 10 1 12
1 2 3 4

27



Network traversal 4.1. Euler tours

Chinese postman problem

Problem as a graph
Model city plan as a weighted graph:

@ junction as a vertex
@ street as edge, length represented by weight

Find a closed walk with minimal total weight.
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We need to possibly make G Eulerian first by adding edges leading to
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Network traversal 4.1. Euler tours

Chinese postman problem

Problem as a graph
Model city plan as a weighted graph:
@ junction as a vertex
@ street as edge, length represented by weight

Find a closed walk with minimal total weight.

Observation
We need to possibly make G Eulerian first by adding edges leading to
G* such that Yo £(G+)\E(G) W(€) is minimal.

Why may this be so difficult?

10/27



Network trave 4.1. Euler tours

Postman: example
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Postman: example
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Network traversal 4.1. Euler tours

Postman: algorithm

Consider a weighted, connected graph G with odd-degree vertices
Vodd: {V1,...,V2k} where k > 1.
@ For each pair of distinct odd-degree vertices v; and v, find a
minimum-weight (v;, v;)-path P; ;.
@ Construct a weighted complete graph on 2k vertices in which
vertex v; and v; are joined by an edge having weight w(P; ;).
© Find the set E of k edges ey,..., e such that Y w(e;) is minimal
and no two edges are incident with the same vertex.
© For each edge e € E, with e = (v;, v}), duplicate the edges of P;; in
graph G.
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Network traversal 4.1. Euler tours

Postman: algorithm example
3/_\ﬁ.<6
u3 2

u2 v3

P12 = [v1, v2] (weight: 3) P23 = [v2,us, Us, Us, v3] (Weight: 5)
P13 = [vq, U2, v3] (weight: 3) P24 = [v2, Ug, v4] (Weight: 2)
P14 = [v1,uy,Us, v4] (Weight: 5) P34 = [va, Us, Us, v4] (weight: 4)
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Network traversal 4.1. Euler tours

Postman: algorithm example
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Network traversal 4.2. Hamilton cycles

Hamilton cycles

Definition
A Hamilton path of a connected graph G is a path that contains every
vertex of G. A Hamilton cycle is a cycle containing every vertex of G.
G is called Hamiltonian if it has a Hamilton cycle.
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Network traversal 4.2. Hamilton cycles

Hamilton cycles

Definition
A Hamilton path of a connected graph G is a path that contains every
vertex of G. A Hamilton cycle is a cycle containing every vertex of G.
G is called Hamiltonian if it has a Hamilton cycle.

Important note

There is no known efficient algorithm to determine whether a graph is
Hamiltonian. Yet, finding Hamilton cycles is important: Traveling
Salesman Problem (TSP).

15/27



TSP: Example
Drilling holes: Consider a board for electrical circuits. To fasten the

components, we need to drill holes. Issue: Which track should the
drilling machine follow?
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TSP: Example
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TSP: Example
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Network traversal 4.2. Hamilton cycles

Some formal properties

G Hamiltonian = VS C V(G),S#0: o(G—S) <|S]|.
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G Hamiltonian = VS C V(G),S#0: o(G—S) <|S]|.

@ Let C be a Hamilton cycle = every vertex is visited exactly once
= w(C-S)<|S|.
e V(C)=V(G)= o(G-S)<wo(C-S).
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Some formal properties

G Hamiltonian =vS C V(G),S#0: o(G—S) < |S]|.

@ Let C be a Hamilton cycle = every vertex is visited exactly once
= wo(C-9S)<|S|.
e V(CO)=V(G)=wo(G-S)<wn(C-S9).
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Network traversal 4.2. Hamilton cycles

Some formal properties: Dirac

Theorem (Dirac)
G is simple with n> 3 vertices andVv : 6(v) > n/2 = G is Hamiltonian.

Proof: by induction

@ For n= 3 vertices: trivial. Assume the theorem has been proven
correct for graphs with k > 3 vertices.
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Network traversal 4.2. Hamilton cycles

Some formal properties: Dirac

Theorem (Dirac)
G is simple with n> 3 vertices andVv : 6(v) > n/2 = G is Hamiltonian.

Proof: by induction

@ For n= 3 vertices: trivial. Assume the theorem has been proven
correct for graphs with k > 3 vertices.

@ Let G have k + 1 vertices, constructed from any graph G* with k
vertices, by adding a vertex u and joining u to at least (k+1)/2
other vertices.

@ Let C* =[wy,Vo,..., V] be a Hamilton cycle in G*.

@ Vertex u is joined to at least (k +1)/2 vertices from C*
= there is at least a pair v; and v; 4 that are adjacent in C*

@ Construct a new cycle C = [vy,...,V;,U, Vi 1, Vk]

20/27



Finding Hamilton cycles

Brute force: Select a vertex v, and explore all possible Hamilton paths

originating from v, and check whether they can be expanded to a
cycle:

21/27



Network traversal 4.2. Hamilton cycles

Posa: applying rotational transformations

Algorithm (Posa)

Randomly select u € V(G), forming the starting point of path P. Let
last(P) = u denote the current end point of P.
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Network traversal 4.2. Hamilton cycles

Posa: applying rotational transformations

Randomly select u € V(G), forming the starting point of path P. Let
last(P) = u denote the current end point of P.
@ Randomly select v € N(last(P)), such that
Q@ Preferably, v ¢ V(P)

@ Ifve V(P)= v has not been previously selected as neighbor of an
end point before.

If no such vertex exists, stop.
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Network traversal 4.2. Hamilton cycles

Posa: applying rotational transformations

Randomly select u € V(G), forming the starting point of path P. Let
last(P) = u denote the current end point of P.
@ Randomly select v € N(last(P)), such that
Q@ Preferably, v ¢ V(P)

@ Ifve V(P)= v has not been previously selected as neighbor of an
end point before.

If no such vertex exists, stop.
Q Ifvg V(P), set P+« P+ {last(P),v).

22/27



Network traversal 4.2. Hamilton cycles

Posa: applying rotational transformations

Algorithm (Posa - cntd)

© Ifv e V(P), apply a rotational transformation of P using edge
(last(P),v):

u \4 X w u A X w
o —>0---—-@—>0--—-0—>8 o--——-o—>e_ ea---0<—90

leading to P*. If last(P*) has not yet been end point for paths of
the current length, P + P*.

23/27



Network traversal 4.2. Hamilton cycles

Posa: applying rotational transformations

Algorithm (Posa - cntd)

© Ifv e V(P), apply a rotational transformation of P using edge
(last(P),v):

u v X w u v X w
>0 --—-a—>0- -0 >0 o--—-—-o—>e_ o<---0<—0

leading to P*. If last(P*) has not yet been end point for paths of
the current length, P + P*.

Q V(P)=V(G) and (u,last(P)) € E(G) = found a Hamilton cycle.
Otherwise, continue with step 1.

23/27



Network traversal 4.2. Hamilton cycles
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Network traversal 4.2. Hamilton cycles

Optimal Hamilton cycle

Basic idea

We want to find a Hamilton cycle with minimal weight = extend graph
to a complete one in which distance between two vertices reflects
real-world distance.

a) Start with an

arbitrary cycle
i i (b) If swapping
edges improve

weight = better
cycle

(@) (b)
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4.2. Hamilton cycles

Network traversal

Hamilton example: China

71,000 cities, 4,566,563 edges < 0.024% longer than optimal one.



Network traversal 4.2. Hamilton cycles

Hamilton example: The world

1,904,711 cities, 7,516,353,779 edges < 0.076% longer than optimal one.
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