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Random networks Introduction

Introduction

Observation
Many real-world networks can be modeled as a random graph in which
an edge 〈u,v〉 appears with probability p.

Spatial systems: Railway networks, airline networks, computer
networks, have the property that the closer x and y are, the higher
the probability that they are linked.

Food webs: Who eats whom? Turns out that techniques from random
networks are useful for getting insight in their structure.

Collaboration networks: Who cites whom? Again, techniques from
random networks allows us to understand what is going on.
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Random networks Classical random networks

Erdös-Rényi graphs

Erdös-Rényi model
An undirected graph ER(n,p) with n vertices. Edge 〈u,v〉 (u 6= v )
exists with probability p.

Note
There is also an alternative definition, which we’ll skip.
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Random networks Classical random networks

ER-graphs

Notation
P[δ (u) = k ] is probability that degree of u is equal to k .

There are maximally n−1 other vertices that can be adjacent to u.
We can choose k other vertices, out of n−1, to join with u
⇒
(n−1

k

)
= (n−1)!

(n−1−k)!·k! possibilities.

Probability of having exactly one specific set of k neighbors is:

pk (1−p)n−1−k

Conclusion

P[δ (u) = k ] =
(

n−1
k

)
pk (1−p)n−1−k
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Random networks Classical random networks

ER-graphs: average vertex degree (the simple way)

Observations

We know that ∑v∈V (G) δ (v) = 2 · |E(G)|

We also know that between each two vertices, there exists an edge with
probability p.

There are at most
(n

2

)
edges

Conclusion: we can expect a total of p ·
(n

2

)
edges.

Conclusion

δ (v) =
1
n ∑δ (v) =

1
n
·2 ·p

(
n
2

)
=

2 ·p ·n · (n−1)
n ·2

= p · (n−1)

Even simpler

Each vertex can have maximally n−1 incident edges⇒ we can expect it to
have p(n−1) edges.
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Random networks Classical random networks

ER-graphs: average vertex degree (the hard way)

Observation
All vertices have the same probability of having degree k , meaning
that we can treat the degree distribution as a stochastic variable δ . We
now know that δ follows a binomial distribution.

Recall
Computing the average (or expected value) of a stochastic variable x ,
is computing:

x def
= E[x ] def

= ∑
k

k ·P[x = k ]
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Random networks Classical random networks

ER-graphs: average vertex degree (the hard way)

n−1
∑

k = 1
k ·P[δ = k ] =

n−1
∑

k = 1

(n−1
k

)
k pk (1−p)n−1−k

=

n−1
∑

k = 1

(n−1
k

)
k pk (1−p)n−1−k

=

n−1
∑

k = 1

(n−1)!
k !(n−1−k)! k pk (1−p)n−1−k

=

n−1
∑

k = 1

(n−1)(n−2)!
k(k−1)!(n−1−k)! k p ·pk−1 (1−p)n−1−k

=

n−1
∑

k = 1

(n−1)(n−2)!
k(k−1)!(n−1−k)! k p ·pk−1 (1−p)n−1−k

=

p (n−1)
n−1
∑

k = 1

(n−2)!
(k−1)!(n−1−k)! pk−1 (1−p)n−1−k
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Random networks Classical random networks

ER-graphs: average vertex degree (the hard way)

n−1
∑

k = 1
k ·P[δ = k ] = p (n−1)

n−1
∑

k = 1

(n−2)!
(k−1)!(n−1−k)! pk−1 (1−p)n−1−k

{Take l ≡ k −1}

=

p (n−1)
n−2
∑

l = 0

(n−2)!
l!(n−1−(l+1))! pl (1−p)n−1−(l+1)

=

p (n−1)
n−2
∑

l = 0

(n−2)!
l!(n−2−l)! pl (1−p)n−2−l

=

p (n−1)
n−2
∑

l = 0

(n−2
l

)
pl (1−p)n−2−l

{Take m ≡ n−2}

=

p (n−1)
m
∑

l = 0

(m
l

)
pl (1−p)m−l

=

p (n−1) ·1
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Random networks Classical random networks

Examples of ER-graphs

Important
ER(n,p) represents a group of Erdös-Rényi graphs: most ER(n,p)
graphs are not isomorphic!

20 30 40 50

2

4

6

8

10

12

Vertex degree

O
c
c
u

rr
e

n
c
e

s

20 30 40 50

50

100
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Vertex degree

O
c
c
u
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e

n
c
e

s

G ∈ ER(100,0.3) G∗ ∈ ER(2000,0.015)
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Random networks Classical random networks

Examples of ER-graphs

Some observations
G ∈ ER(100,0.3)⇒

δ = 0.3×99 = 29.7
Expected |E(G)| =
1
2 ·∑δ (v) = np(n−1)/2 = 1

2 ×100×0.3×99 = 1485.
In our example: 490 edges.

G∗ ∈ ER(2000,0.015)⇒
δ = 0.015×1999 = 29.985
Expected |E(G)| =
1
2 ∑δ (v) = np(n−1)/2 = 1

2 ×2000×0.015×1999 = 29,985.
In our example: 29,708 edges.

The larger the graph, the more probable its degree distribution will
follow the expected one (Note: not easy to show!)
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The larger the graph, the more probable its degree distribution will
follow the expected one (Note: not easy to show!)
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Random networks Classical random networks

ER-graphs: average path length

Observation
For any large H ∈ ER(n,p) it can be shown that the average path
length d(H) is equal to:

d(H) =
ln(n)− γ

ln(pn)
+0.5

with γ the Euler constant (≈ 0.5772).

Observation

With δ = p(n−1), we have

d(H)≈ ln(n)− γ

ln(δ )
+0.5

11 / 45



Random networks Classical random networks

ER-graphs: average path length

Example: Keep average vertex degree fixed, but change size of
graphs:
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ER-graphs: average path length

Example: Keep size fixed, but change average vertex degree:
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Random networks Classical random networks

ER-graphs: clustering coefficient

Reasoning
Clustering coefficient: fraction of edges between neighbors and
maximum possible edges.
Expected number of edges between k neighbors:

(k
2

)
p

Maximum number of edges between k neighbors:
(k

2

)
Expected clustering coefficient for every vertex: p
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Random networks Classical random networks

ER-graphs: connectivity

Giant component
Observation: When increasing p, most vertices are contained in the
same component.
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Random networks Classical random networks

ER-graphs: connectivity

Robustness
Experiment: How many vertices do we need to remove to partition an
ER-graph? Let G ∈ ER(2000,0.015).
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Random networks Small worlds

Small worlds: Six degrees of separation

Stanley Milgram

Pick two people at random
Try to measure their distance: A
knows B knows C ...
Experiment: Let Alice try to get a
letter to Zach, whom she does not
know.
Strategy by Alice: choose Bob who
she thinks has a better chance of
reaching Zach.
Result: On average 5.5 hops before
letter reaches target.

17 / 45



Random networks Small worlds

Small-world networks

General observation
Many real-world networks show a small average shortest path length.

Observation
ER-graphs have a small average shortest path length, but not the high
clustering coefficient that we observe in real-world networks.

Question
Can we construct more realistic models of real-world networks?
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Random networks Small worlds

Watts-Strogatz graphs

Algorithm (Watts-Strogatz)
V = {v1,v2, . . . ,vn}. Let k be even. Choose n� k � ln(n)� 1.

1 Order the n vertices into a ring
2 Connect each vertex to its first k/2 right-hand (counterclockwise)

neighbors, and to its k/2 left-hand (clockwise) neighbors.
3 With probability p, replace edge 〈u,v〉 with an edge 〈u,w〉 where

w 6= u is randomly chosen, but such that 〈u,w〉 6∈ E(G).
4 Notation: WS(n,k ,p) graph
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Random networks Small worlds

Watts-Strogatz graphs

p = 0.0 p = 0.20 p = 0.90

Note
n = 20; k = 8; ln(n)≈ 3. Conditions are not really met.
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Random networks Small worlds

Watts-Strogatz graphs

Observation
For many vertices in a WS-graph, d(u,v) will be small:

Each vertex has k nearby neighbors.
There will be direct links to other “groups” of vertices.
weak links: the long links in a WS-graph that cross the ring.
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Random networks Small worlds

WS-graphs: clustering coefficient

Theorem

For any G from WS(n,k ,0),CC(G) = 3
4

k−2
k−1 .

Proof
Choose arbitrary u ∈ V (G). Let
H = G[N(u)]. Note that
G[{u}∪N(u)] is equal to:

+

2
v

v+

3

v+

1

v
2

-

v
3

-

v
1

-

u
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Random networks Small worlds

WS-graphs: clustering coefficient

Proof (cntd)

+

2
v

v+

3

v+

1

v
2

-

v
3

-

v
1

-

u

δ (v−1 ): The “farthest” right-hand neighbor of v−1 is v−k/2

Conclusion: v−1 has k
2 −1 right-hand neighbors in H.

v−2 has k
2 −2 right-hand neighbors in H.

In general: v−i has k
2 − i right-hand neighbors in H.
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Random networks Small worlds

WS-graphs: clustering coefficient

Proof (cntd)

+

2
v

v+

3

v+

1

v
2

-

v
3

-

v
1

-

u

v−i is missing only u as left-hand neighbor in H⇒ v−i has k
2 −1

left-hand neighbors.

δ (v−i ) =

(
k
2 −1

)
+

(
k
2 − i

)
= k − i−1 [Same for δ (v+

i )]
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Random networks Small worlds

WS-graphs: clustering coefficient

Proof (cntd)

|E(H)|= 1
2 ∑

v ∈ V (H)

δ (v) =

1
2

k/2
∑

i = 1

(
δ (v−i )+δ (v+

i )

)
= 1

2 ·2
k/2
∑

i = 1
δ (v−i ) =

k/2
∑

i = 1
(k − i−1)

∑
m
i=1 i = 1

2m(m+1)⇒ |E(H)|= 3
8k(k −2)

|V (H)|= k ⇒

cc(u) = |E(H)|
(k

2)
=

3
8 k(k−2)
1
2 k(k−1)

=
3(k−2)
4(k−1)
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Random networks Small worlds

WS-graphs: average shortest path length

Theorem

∀G ∈WS(n,k ,0) the average shortest-path length d(u) from vertex u
to any other vertex is approximated by

d(u)≈ (n−1)(n+k −1)
2kn
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Random networks Small worlds

WS-graphs: average shortest path length

Proof

Let L(u,1) = left-hand vertices {v+
1 ,v+

2 , . . . ,v+
k/2}

Let L(u,2) = left-hand vertices {v+
k/2+1, . . . ,v

+
k }.

Let L(u,m) = left-hand vertices {v+
(m−1)k/2+1, . . . ,v

+
mk/2}.

Note: ∀v ∈ L(u,m) : v is connected to a vertex from L(u,m−1).

Note
L(u,m) = left-hand neighbors connected to u through a (shortest) path
of length m. Define analogously R(u,m).
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Random networks Small worlds

WS-graphs: average shortest path length

Proof (cntd)

Index p of the farthest vertex v+
p contained in any L(u,m) will be

less than approximately (n−1)/2.

All L(u,m) have equal size⇒m ·k/2≤ (n−1)/2⇒m ≤ (n−1)/2
k/2 .

d(u)≈ 2
1·|L(u,1)|+2·|L(u,2)|+... n−1

k ·|L(u,m)|
n

which leads to

d(u)≈ k
n

(n−1)/k
∑

i = 1
i =

k
2n

(
n−1

k

)(
n−1

k
+1
)
=

(n−1)(n+k −1)
2kn
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Random networks Small worlds

WS-graphs: comparison to real-world networks

Observation
WS(n,k ,0) graphs have long shortest paths, yet high clustering
coefficient. However, increasing p shows that average path length
drops rapidly.
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Normalized: divide by CC(G0)
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G0 ∈WS(n,k ,0)
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Random networks Scale-free networks

Scale-free networks

Important observation
In many real-world networks we see very few high-degree nodes, and
that the number of high-degree nodes decreases exponentially: Web
link structure, Internet topology, collaboration networks, etc.

Characterization
In a scale-free network, P[δ (u) = k ] ∝ k−α

Definition
A function f is scale-free iff f (bx) = C(b) · f (x) where C(b) is a
constant dependent only on b
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Example scale-free network
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What’s in a name: scale-free

Node ID (ranked according to degree)
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Random networks Scale-free networks

Constructing SF networks

Observation
Where ER and WS graphs can be constructed from a given set of
vertices, scale-free networks result from a growth process combined
with preferential attachment.
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Random networks Scale-free networks

Barabási-Albert networks

Algorithm (Barabási-Albert)
G0 ∈ ER(n0,p) with V0 = V (G0). At each step s > 0:

1 Add a new vertex vs : Vs← Vs−1∪{vs}.
2 Add m ≤ n0 edges incident to vs and a vertex u from Vs−1 (and u

not chosen before in current step). Choose u with probability

P[select u] =
δ (u)

∑w∈Vs−1
δ (w)

Note: choose u proportional to its current degree.
3 Stop when n vertices have been added, otherwise repeat the

previous two steps.
Result: a Barabási-Albert graph, BA(n,n0,m).
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Random networks Scale-free networks

BA-graphs: degree distribution

Theorem
For any BA(n,n0,m) graph G and u ∈ V (G):

P[δ (u) = k ] =
2m(m+1)

k(k +1)(k +2)
∝

1
k3
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Generalized BA-graphs

Algorithm
G0 has n0 vertices V0 and no edges. At each step s > 0:

1 Add a new vertex vs to Vs−1.
2 Add m ≤ n0 edges incident to vs and different vertices u from Vs−1

(u not chosen before during current step). Choose u with
probability proportional to its current degree δ (u).

3 For some constant c ≥ 0 add another c×m edges between
vertices from Vs−1; probability adding edge between u and w is
proportional to the product δ (u) ·δ (w) (and 〈u,w〉 does not yet
exist).

4 Stop when n vertices have been added.
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Random networks Scale-free networks

Generalized BA-graphs: degree distribution

Theorem
For any generalized BA(n,n0,m) graph G and u ∈ V (G):

P[δ (u) = k ] ∝ k−(2+
1

1+2c )

Observation
For c = 0, we have a BA-graph;
limc→∞P[δ (u) = k ] ∝

1
k2
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Random networks Scale-free networks

BA-graphs: clustering coefficient

BA-graphs after t steps
Consider clustering coefficient of vertex vs after t steps in the
construction of a BA(t ,n0,m) graph. Note: vs was added at step s ≤ t .

cc(vs) =
m−1

8(
√

t +
√

s/m)2

(
ln2(t)+

4m
(m−1)2 ln2(s)

)
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BA-graphs: clustering coefficient

Note: Fix m and t and vary s:
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Random networks Scale-free networks

Comparing clustering coefficients

Issue: Construct an ER graph with same number of vertices and
average vertex degree:

δ (G) = E[δ ] =
∞

∑
k = m

k ·P[δ (u) = k ]

=
∞

∑
k = m

k · 2m(m+1)
k(k+1)(k+2)

= 2m(m+1)
∞

∑
k = m

k
k(k+1)(k+2)

= 2m(m+1) · 1
m+1 = 2m

ER-graph: δ (G) = p(n−1)⇒ choose p = 2m
n−1

Example
BA(100,000,0,8)-graph has cc(v)≈ 0.0015; ER(100,000,p)-graph
has cc(v)≈ 0.00016

40 / 45



Random networks Scale-free networks

Comparing clustering coefficients

Issue: Construct an ER graph with same number of vertices and
average vertex degree:

δ (G) = E[δ ] =
∞

∑
k = m

k ·P[δ (u) = k ]

=
∞

∑
k = m

k · 2m(m+1)
k(k+1)(k+2)

= 2m(m+1)
∞

∑
k = m

k
k(k+1)(k+2)

= 2m(m+1) · 1
m+1 = 2m

ER-graph: δ (G) = p(n−1)⇒ choose p = 2m
n−1

Example
BA(100,000,0,8)-graph has cc(v)≈ 0.0015; ER(100,000,p)-graph
has cc(v)≈ 0.00016

40 / 45



Random networks Scale-free networks

Comparing clustering coefficients

Issue: Construct an ER graph with same number of vertices and
average vertex degree:

δ (G) = E[δ ] =
∞

∑
k = m

k ·P[δ (u) = k ]

=
∞

∑
k = m

k · 2m(m+1)
k(k+1)(k+2)

= 2m(m+1)
∞

∑
k = m

k
k(k+1)(k+2)

= 2m(m+1) · 1
m+1 = 2m

ER-graph: δ (G) = p(n−1)⇒ choose p = 2m
n−1

Example
BA(100,000,0,8)-graph has cc(v)≈ 0.0015; ER(100,000,p)-graph
has cc(v)≈ 0.00016

40 / 45



Random networks Scale-free networks

Comparing clustering coefficients

Issue: Construct an ER graph with same number of vertices and
average vertex degree:

δ (G) = E[δ ] =
∞

∑
k = m

k ·P[δ (u) = k ]

=
∞

∑
k = m

k · 2m(m+1)
k(k+1)(k+2)

= 2m(m+1)
∞

∑
k = m

k
k(k+1)(k+2)

= 2m(m+1) · 1
m+1 = 2m

ER-graph: δ (G) = p(n−1)⇒ choose p = 2m
n−1

Example
BA(100,000,0,8)-graph has cc(v)≈ 0.0015; ER(100,000,p)-graph
has cc(v)≈ 0.00016

40 / 45



Random networks Scale-free networks

Comparing clustering coefficients

Further comparison: Ratio of cc(vs) between
BA(N ≤ 1 000 000 000,0,8)-graph to an ER(N,p)-graph
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Average path lengths

Observation

d(BA) = ln(n)−ln(m/2)−1−γ

ln(ln(n))+ln(m/2) +1.5

with γ ≈ 0.5772 the Euler constant. For δ (v) = 10:
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Random networks Scale-free networks

Scale-free graphs and robustness

Observation
Scale-free networks have hubs making them vulnerable to targeted
attacks.
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Random networks Scale-free networks

Barabási-Albert with tunable clustering

Algorithm
Consider a small graph G0 with n0 vertices V0 and no edges. At each
step s > 0:

1 Add a new vertex vs to Vs−1.
2 Select u from Vs−1 not adjacent to vs, with probability proportional

to δ (u). Add edge 〈vs,u〉.

(a) If m−1 edges have been added, continue with Step 3.
(b) With probability q: select a vertex w adjacent to u, but not to vs. If

no such vertex exists, continue with Step c. Otherwise, add edge
〈vs,w〉 and continue with Step a.

(c) Select vertex u′ from Vs−1 not adjacent to vs with probability
proportional to δ (u′). Add edge 〈vs,u′〉 and set u← u′. Continue
with Step a.

3 If n vertices have been added stop, else go to Step 1.
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Barabási-Albert with tunable clustering

Special case: q = 1
If we add edges 〈vs,w〉 with probability 1, we obtain a previously
constructed subgraph.
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Recall

cc(x) =

{
1 if x = wi

2
k+1 if x = u,vs
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