
Graph Theory and Complex Networks:
An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 03: Extensions
Version: April 7, 2014

Extensions 3.1 Directed graphs

Directed graph

Idea: extend graphs by letting edges have an explicit direction:

Representing one-way streets in a street plan
Expressing asymmetry in social relationships (Alice likes Bob:
A→ B)
Expressing asymmetry in communication networks

Definition
A directed graph or digraph D is a tuple (V ,A) of vertices V , and a
collection of arcs A where each arc a = 〈−−→u,v〉 joins a vertex (tail) u ∈ V
to another (not necessarily distinct) vertex (head) v .

2 / 24

Extensions 3.1 Directed graphs

Directed graph

Idea: extend graphs by letting edges have an explicit direction:

Representing one-way streets in a street plan
Expressing asymmetry in social relationships (Alice likes Bob:
A→ B)
Expressing asymmetry in communication networks

Definition
A directed graph or digraph D is a tuple (V ,A) of vertices V , and a
collection of arcs A where each arc a = 〈−−→u,v〉 joins a vertex (tail) u ∈ V
to another (not necessarily distinct) vertex (head) v .

2 / 24

Extensions 3.1 Directed graphs

Basic properties

Definition
For a vertex v of digraph D, the number of arcs with head v is called
the indegree δin(v) of v . The outdegree δout (v) is the number of arcs
having v as their tail.

Theorem
∀D : ∑v∈V (D) δin(v) = ∑v∈V (D) δout (v) = |A(D)|

Proof
Every arc in D has exactly one head and one tail.

∑v∈V (D) δin(v) is the same as counting all arc heads

∑v∈V (D) δout (v) is the same as counting all tails
Both are equal to the total number of arcs.

3 / 24

Extensions 3.1 Directed graphs

Basic properties

Definition
For a vertex v of digraph D, the number of arcs with head v is called
the indegree δin(v) of v . The outdegree δout (v) is the number of arcs
having v as their tail.

Theorem
∀D : ∑v∈V (D) δin(v) = ∑v∈V (D) δout (v) = |A(D)|

Proof
Every arc in D has exactly one head and one tail.

∑v∈V (D) δin(v) is the same as counting all arc heads

∑v∈V (D) δout (v) is the same as counting all tails
Both are equal to the total number of arcs.

3 / 24

Extensions 3.1 Directed graphs

Basic properties

Definition
For a vertex v of digraph D, the number of arcs with head v is called
the indegree δin(v) of v . The outdegree δout (v) is the number of arcs
having v as their tail.

Theorem
∀D : ∑v∈V (D) δin(v) = ∑v∈V (D) δout (v) = |A(D)|

Proof
Every arc in D has exactly one head and one tail.

∑v∈V (D) δin(v) is the same as counting all arc heads

∑v∈V (D) δout (v) is the same as counting all tails
Both are equal to the total number of arcs.

3 / 24

Extensions 3.1 Directed graphs

Adjacency matrix

a1

v1

v2

a2

a3

a4

a5
a6

v3

v4

a7

v1 v2 v3 v4 ∑

v1 1 1 0 0 2
v2 0 0 1 0 1
v3 1 1 0 0 2
v4 0 0 1 1 2
∑ 2 2 2 1 7

Observations
Adjacency matrix is not necessarily symmetric: in general,
A[i , j] 6= A[j , i].
A digraph D is strict iff A[i , j]≤ 1 and A[i , i] = 0.
∀vi : ∑j A[i , j] = δout (vi) and ∑j A[j , i] = δin(vi).

4 / 24

Extensions 3.1 Directed graphs

Incidence matrix

a1

v1

v2

a2

a3

a4

a5
a6

v3

v4

a7

a1 a2 a3 a4 a5 a6 a7
v1 0 1 -1 0 0 0 0
v2 0 -1 0 -1 1 0 0
v3 0 0 1 1 -1 -1 0
v4 0 0 0 0 0 1 0

M[i , j] =


1 if vertex vi is the tail of arc aj

−1 if vertex vi is the head of arc aj

0 otherwise

Observation
Incidence matrices for digraphs cannot capture loops, making these
matrices being used less often compared to undirected graphs.

5 / 24

Extensions 3.1 Directed graphs

Incidence matrix

a1

v1

v2

a2

a3

a4

a5
a6

v3

v4

a7

a1 a2 a3 a4 a5 a6 a7
v1 0 1 -1 0 0 0 0
v2 0 -1 0 -1 1 0 0
v3 0 0 1 1 -1 -1 0
v4 0 0 0 0 0 1 0

M[i , j] =


1 if vertex vi is the tail of arc aj

−1 if vertex vi is the head of arc aj

0 otherwise

Observation
Incidence matrices for digraphs cannot capture loops, making these
matrices being used less often compared to undirected graphs.

5 / 24

Extensions 3.1 Directed graphs

Connectivity

Definition
A directed (v0,vk)-walk is an alternating sequence
[v0,a0,v1,a1, . . . ,vk−1,ak−1,vk] with ai = 〈−−−−→vi ,vi+1〉.

A directed trail is a directed walk with distinct arcs.
a directed path is a directed trail with distinct vertices.
a directed cycle is a directed trail with distinct vertices except for
v0 = vk .

Definition
D is strongly connected if there exists a directed path between every
pair of distinct vertices from D. D is weakly connected if its underlying
(undirected) graph is connected.

6 / 24

Extensions 3.1 Directed graphs

Connectivity

Definition
A directed (v0,vk)-walk is an alternating sequence
[v0,a0,v1,a1, . . . ,vk−1,ak−1,vk] with ai = 〈−−−−→vi ,vi+1〉.

A directed trail is a directed walk with distinct arcs.
a directed path is a directed trail with distinct vertices.
a directed cycle is a directed trail with distinct vertices except for
v0 = vk .

Definition
D is strongly connected if there exists a directed path between every
pair of distinct vertices from D. D is weakly connected if its underlying
(undirected) graph is connected.

6 / 24

Extensions 3.1 Directed graphs

Reachability

Definition
Vertex v is reachable from vertex u if there exists a directed (u,v)-path.

Algorithm (Reachable vertices)
Rt (u) is set of reachable vertices from u found after t steps.
Nout (v) is out-neighbors of v: Nout (v) = {w ∈ V (D)|∃〈−−→v ,w〉 ∈ A(D)}.

1 Set t ← 0 and R0(u)←{u}.

2 Construct the set Rt+1(u)← Rt (u)∪
(⋃

v∈Rt (u)Nout (v)

)
.

3 If Rt+1(u) = Rt (u), stop: R(u)← Rt (u). Otherwise, increment t
and repeat the previous step.

7 / 24

Extensions 3.1 Directed graphs

Reachability

Definition
Vertex v is reachable from vertex u if there exists a directed (u,v)-path.

Algorithm (Reachable vertices)
Rt (u) is set of reachable vertices from u found after t steps.
Nout (v) is out-neighbors of v: Nout (v) = {w ∈ V (D)|∃〈−−→v ,w〉 ∈ A(D)}.

1 Set t ← 0 and R0(u)←{u}.

2 Construct the set Rt+1(u)← Rt (u)∪
(⋃

v∈Rt (u)Nout (v)

)
.

3 If Rt+1(u) = Rt (u), stop: R(u)← Rt (u). Otherwise, increment t
and repeat the previous step.

7 / 24

Extensions 3.1 Directed graphs

Reachability

Definition
Vertex v is reachable from vertex u if there exists a directed (u,v)-path.

Algorithm (Reachable vertices)
Rt (u) is set of reachable vertices from u found after t steps.
Nout (v) is out-neighbors of v: Nout (v) = {w ∈ V (D)|∃〈−−→v ,w〉 ∈ A(D)}.

1 Set t ← 0 and R0(u)←{u}.

2 Construct the set Rt+1(u)← Rt (u)∪
(⋃

v∈Rt (u)Nout (v)

)
.

3 If Rt+1(u) = Rt (u), stop: R(u)← Rt (u). Otherwise, increment t
and repeat the previous step.

7 / 24

Extensions 3.1 Directed graphs

Reachability

Definition
Vertex v is reachable from vertex u if there exists a directed (u,v)-path.

Algorithm (Reachable vertices)
Rt (u) is set of reachable vertices from u found after t steps.
Nout (v) is out-neighbors of v: Nout (v) = {w ∈ V (D)|∃〈−−→v ,w〉 ∈ A(D)}.

1 Set t ← 0 and R0(u)←{u}.

2 Construct the set Rt+1(u)← Rt (u)∪
(⋃

v∈Rt (u)Nout (v)

)
.

3 If Rt+1(u) = Rt (u), stop: R(u)← Rt (u). Otherwise, increment t
and repeat the previous step.

7 / 24

Extensions 3.1 Directed graphs

Reachability

Definition
Vertex v is reachable from vertex u if there exists a directed (u,v)-path.

Algorithm (Reachable vertices)
Rt (u) is set of reachable vertices from u found after t steps.
Nout (v) is out-neighbors of v: Nout (v) = {w ∈ V (D)|∃〈−−→v ,w〉 ∈ A(D)}.

1 Set t ← 0 and R0(u)←{u}.

2 Construct the set Rt+1(u)← Rt (u)∪
(⋃

v∈Rt (u)Nout (v)

)
.

3 If Rt+1(u) = Rt (u), stop: R(u)← Rt (u). Otherwise, increment t
and repeat the previous step.

7 / 24

Extensions 3.1 Directed graphs

Strongly connected orientations

Note
An orientation D(G) of an undirected graph G is a directed graph in
which edge from G has been assigned a direction.

Question
Given G, how many orientations can you construct?

Theorem
There exists an orientation D(G) for a connected undirected graph G
that is strongly connected if and only if λ (G)≥ 2.

Proof: Strongly connected⇒ λ (G)≥ 2

By contradiction: assume that λ (G) = 1.

8 / 24

Extensions 3.1 Directed graphs

Strongly connected orientations

Note
An orientation D(G) of an undirected graph G is a directed graph in
which edge from G has been assigned a direction.

Question
Given G, how many orientations can you construct?

Theorem
There exists an orientation D(G) for a connected undirected graph G
that is strongly connected if and only if λ (G)≥ 2.

Proof: Strongly connected⇒ λ (G)≥ 2

By contradiction: assume that λ (G) = 1.

8 / 24

Extensions 3.1 Directed graphs

Strongly connected orientations

Note
An orientation D(G) of an undirected graph G is a directed graph in
which edge from G has been assigned a direction.

Question
Given G, how many orientations can you construct?

Theorem
There exists an orientation D(G) for a connected undirected graph G
that is strongly connected if and only if λ (G)≥ 2.

Proof: Strongly connected⇒ λ (G)≥ 2

By contradiction: assume that λ (G) = 1.

8 / 24

Extensions 3.1 Directed graphs

Strongly connected orientations

Note
An orientation D(G) of an undirected graph G is a directed graph in
which edge from G has been assigned a direction.

Question
Given G, how many orientations can you construct?

Theorem
There exists an orientation D(G) for a connected undirected graph G
that is strongly connected if and only if λ (G)≥ 2.

Proof: Strongly connected⇒ λ (G)≥ 2

By contradiction: assume that λ (G) = 1.

8 / 24

Extensions 3.1 Directed graphs

Proof: λ (G)≥ 2⇒ exists strongly conn. orientation

λ (G)≥ 2⇒ every edge lies on a cycle.
C = [v1,v2, . . . ,vn,v1]⇒ 〈vi ,vi+1〉 is replaced with arc 〈−−−−→vi ,vi+1〉;
〈vn,v1〉 by 〈−−−→vn,v1〉. If V (C) = V (G), stop.

V (C) 6= V (G). Let w 6∈ V (C). λ (G)≥ 2⇒ there are two
edge-independent (w ,v1)-paths P1 and P2. Set orientation.
Repeat until W = V (C)∪V (P1)∪V (P2) = V (G)

9 / 24

Extensions 3.1 Directed graphs

Proof: λ (G)≥ 2⇒ exists strongly conn. orientation

λ (G)≥ 2⇒ every edge lies on a cycle.
C = [v1,v2, . . . ,vn,v1]⇒ 〈vi ,vi+1〉 is replaced with arc 〈−−−−→vi ,vi+1〉;
〈vn,v1〉 by 〈−−−→vn,v1〉. If V (C) = V (G), stop.

v

v1

vn

vi-1

vj+1

2

v

v

j

i

V (C) 6= V (G). Let w 6∈ V (C). λ (G)≥ 2⇒ there are two
edge-independent (w ,v1)-paths P1 and P2. Set orientation.
Repeat until W = V (C)∪V (P1)∪V (P2) = V (G)

9 / 24

Extensions 3.1 Directed graphs

Proof: λ (G)≥ 2⇒ exists strongly conn. orientation

λ (G)≥ 2⇒ every edge lies on a cycle.
C = [v1,v2, . . . ,vn,v1]⇒ 〈vi ,vi+1〉 is replaced with arc 〈−−−−→vi ,vi+1〉;
〈vn,v1〉 by 〈−−−→vn,v1〉. If V (C) = V (G), stop.

v

v1

vn

vi-1

vj+1

2

v

v

j

i

V (C) 6= V (G). Let w 6∈ V (C). λ (G)≥ 2⇒ there are two
edge-independent (w ,v1)-paths P1 and P2. Set orientation.
Repeat until W = V (C)∪V (P1)∪V (P2) = V (G)

9 / 24

Extensions 3.1 Directed graphs

Proof: λ (G)≥ 2⇒ exists strongly conn. orientation

λ (G)≥ 2⇒ every edge lies on a cycle.
C = [v1,v2, . . . ,vn,v1]⇒ 〈vi ,vi+1〉 is replaced with arc 〈−−−−→vi ,vi+1〉;
〈vn,v1〉 by 〈−−−→vn,v1〉. If V (C) = V (G), stop.

v

v1

vn

vi-1

vj+1

2

v

v

j

i

v

v1

vn

vi-1

vj+1

2

v

v

j

i

w

w
w

w

w

2
3

2

3

V (C) 6= V (G). Let w 6∈ V (C). λ (G)≥ 2⇒ there are two
edge-independent (w ,v1)-paths P1 and P2. Set orientation.
Repeat until W = V (C)∪V (P1)∪V (P2) = V (G)

9 / 24

Extensions 3.1 Directed graphs

Proof: λ (G)≥ 2⇒ exists strongly conn. orientation

λ (G)≥ 2⇒ every edge lies on a cycle.
C = [v1,v2, . . . ,vn,v1]⇒ 〈vi ,vi+1〉 is replaced with arc 〈−−−−→vi ,vi+1〉;
〈vn,v1〉 by 〈−−−→vn,v1〉. If V (C) = V (G), stop.

v

v1

vn

vi-1

vj+1

2

v

v

j

i

v

v1

vn

vi-1

vj+1

2

v

v

j

i

w

w
w

w

w

2
3

2

3

V (C) 6= V (G). Let w 6∈ V (C). λ (G)≥ 2⇒ there are two
edge-independent (w ,v1)-paths P1 and P2. Set orientation.
Repeat until W = V (C)∪V (P1)∪V (P2) = V (G)

9 / 24

Extensions 3.2 Weighted graphs

Weighted graphs

Definition
In a weighted graph G each edge e has an associated real-valued
weight w(e) < ∞. For H ⊆G, w(H) = ∑e∈E(H)w(e).

Important application: Finding the shortest path in a graph. Basic
idea:

Start with a set S = {v0}, and add vertex closest to v0.
Expand S by adding vertex closest to v0 through one of the
vertices in S.
Stop when there are no more vertices left.

10 / 24

Extensions 3.2 Weighted graphs

Weighted graphs

Definition
In a weighted graph G each edge e has an associated real-valued
weight w(e) < ∞. For H ⊆G, w(H) = ∑e∈E(H)w(e).

Important application: Finding the shortest path in a graph. Basic
idea:

Start with a set S = {v0}, and add vertex closest to v0.
Expand S by adding vertex closest to v0 through one of the
vertices in S.
Stop when there are no more vertices left.

10 / 24

Extensions 3.2 Weighted graphs

Weighted graphs

Definition
In a weighted graph G each edge e has an associated real-valued
weight w(e) < ∞. For H ⊆G, w(H) = ∑e∈E(H)w(e).

Important application: Finding the shortest path in a graph. Basic
idea:

Start with a set S = {v0}, and add vertex closest to v0.
Expand S by adding vertex closest to v0 through one of the
vertices in S.
Stop when there are no more vertices left.

10 / 24

Extensions 3.2 Weighted graphs

Weighted graphs

Definition
In a weighted graph G each edge e has an associated real-valued
weight w(e) < ∞. For H ⊆G, w(H) = ∑e∈E(H)w(e).

Important application: Finding the shortest path in a graph. Basic
idea:

Start with a set S = {v0}, and add vertex closest to v0.
Expand S by adding vertex closest to v0 through one of the
vertices in S.
Stop when there are no more vertices left.

10 / 24

Extensions 3.2 Weighted graphs

Weighted graphs

Definition
In a weighted graph G each edge e has an associated real-valued
weight w(e) < ∞. For H ⊆G, w(H) = ∑e∈E(H)w(e).

Important application: Finding the shortest path in a graph. Basic
idea:

Start with a set S = {v0}, and add vertex closest to v0.
Expand S by adding vertex closest to v0 through one of the
vertices in S.
Stop when there are no more vertices left.

10 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5

4

2
3

4

v1

v2

v3

v4

v5

v6

v7

v0

11 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5

4

2
3

4

v1

v2

v3

v4

v5

v6

v7

v0

3

6

1

11 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5

4

2
3

4

v1

v2

v3

v4

v5

v6

v7

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

v0

11 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5

4

2
3

4

v1

v2

v3

v4

v5

v6

v7

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

v0

3

68

5

11 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5

4

2
3

4

v1

v2

v3

v4

v5

v6

v7

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

11 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5

4

2
3

4

v1

v2

v3

v4

v5

v6

v7

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0
5 6

5

4

11 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5

4

2
3

4

v1

v2

v3

v4

v5

v6

v7

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

11 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5

4

2
3

4

v1

v2

v3

v4

v5

v6

v7

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

5 6

5

8

11 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

12 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)
6

5

8

12 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

(3,5)

12 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

(3,5)

6 7

12 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

(3,5)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

(3,5)

(0,6)

12 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

(3,5)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

(3,5)

(0,6) 7

12 / 24

Extensions 3.2 Weighted graphs

Dijkstra’s algorithm

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

(3,5)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(2,5)

(3,5)

(0,6)

2

1

17

3

6

5
4

23

4

v1

v2

v3

v4

v5

v6

v7

(0,1)

(0,3)

v0

(2,4)

(3,5)

(0,6)
(6,7)

12 / 24

Extensions 3.3 Colorings

Edge colorings

Basic idea
Assign colors to edges such that two edges incident to the same
vertex have different colors:
∀〈u,v〉,〈v ,w〉 ∈ E(G) : col(〈u,v〉) 6= col(〈v ,w〉).

Application
Consider n storage devices, but that we need to move data between
devices (e.g., to balance the load).

Represent each storage device by a vertex.
Divide all data into equally sized data blocks.
If data block b needs to be moved from device i to j : add arc 〈

−→
i , j〉.

Note: we may have multiple arcs from i to j .

13 / 24

Extensions 3.3 Colorings

Edge colorings

Basic idea
Assign colors to edges such that two edges incident to the same
vertex have different colors:
∀〈u,v〉,〈v ,w〉 ∈ E(G) : col(〈u,v〉) 6= col(〈v ,w〉).

Application
Consider n storage devices, but that we need to move data between
devices (e.g., to balance the load).

Represent each storage device by a vertex.
Divide all data into equally sized data blocks.
If data block b needs to be moved from device i to j : add arc 〈

−→
i , j〉.

Note: we may have multiple arcs from i to j .

13 / 24

Extensions 3.3 Colorings

Edge colorings: example

Problem
Can we devise a migration schedule that does the job as quickly as
possible, under the assumption that each device can move/accept only
one block at a time?

14 / 24

Extensions 3.3 Colorings

Edge colorings: example

Problem
Can we devise a migration schedule that does the job as quickly as
possible, under the assumption that each device can move/accept only
one block at a time?

Device 1 Device 2

Device 3 Device 4

2

1 3

4

5

14 / 24

Extensions 3.3 Colorings

Edge colorings: example

Problem
Can we devise a migration schedule that does the job as quickly as
possible, under the assumption that each device can move/accept only
one block at a time?

Device 1 Device 2

Device 3 Device 4

2

1 3

4

5

Device 1 Device 2

Device 3 Device 4

1

2 2

1

3

14 / 24

Extensions 3.3 Colorings

Edge colorings: formalities

Definition
G, connected and loopless, is k-edge colorable if E(G) can be
partitioned into k disjoint sets E1, . . . ,Ek such that
∀Ei : e1,e2 ∈ Ei ⇒ e1,e2 are not incident with the same vertex.

Edge chromatic number: minimal k for which G is k-edge colorable:
χ ′(G).

Theorem (Vizing)

For any simple graph G, either χ ′(G) = ∆(G) or χ ′(G) = ∆(G) + 1, with
∆(G) = maxv∈V (G)δ (v)

Note
For all graphs we have χ ′(G)≥∆(G)

15 / 24

Extensions 3.3 Colorings

Edge colorings: formalities

Definition
G, connected and loopless, is k-edge colorable if E(G) can be
partitioned into k disjoint sets E1, . . . ,Ek such that
∀Ei : e1,e2 ∈ Ei ⇒ e1,e2 are not incident with the same vertex.

Edge chromatic number: minimal k for which G is k-edge colorable:
χ ′(G).

Theorem (Vizing)

For any simple graph G, either χ ′(G) = ∆(G) or χ ′(G) = ∆(G) + 1, with
∆(G) = maxv∈V (G)δ (v)

Note
For all graphs we have χ ′(G)≥∆(G)

15 / 24

Extensions 3.3 Colorings

Edge colorings: formalities

Definition
G, connected and loopless, is k-edge colorable if E(G) can be
partitioned into k disjoint sets E1, . . . ,Ek such that
∀Ei : e1,e2 ∈ Ei ⇒ e1,e2 are not incident with the same vertex.

Edge chromatic number: minimal k for which G is k-edge colorable:
χ ′(G).

Theorem (Vizing)

For any simple graph G, either χ ′(G) = ∆(G) or χ ′(G) = ∆(G) + 1, with
∆(G) = maxv∈V (G)δ (v)

Note
For all graphs we have χ ′(G)≥∆(G)

15 / 24

Extensions 3.3 Colorings

Vertex colorings

Definition
G, simple and connected, is k-vertex colorable if V (G) can be
partitioned into k disjoint sets V1, . . . ,Vk such that
∀Vi , ∀x ,y ∈ Vi : 〈x ,y〉 6∈ E(G).

Chromatic number: minimal k for which G is k-vertex colorable: χ(G).

Problem
Finding χ(G) is a notoriously difficult problem: no efficient general
solution exists, meaning we need to essentially try all possible
combinations.

16 / 24

Extensions 3.3 Colorings

Vertex colorings

Definition
G, simple and connected, is k-vertex colorable if V (G) can be
partitioned into k disjoint sets V1, . . . ,Vk such that
∀Vi , ∀x ,y ∈ Vi : 〈x ,y〉 6∈ E(G).

Chromatic number: minimal k for which G is k-vertex colorable: χ(G).

Problem
Finding χ(G) is a notoriously difficult problem: no efficient general
solution exists, meaning we need to essentially try all possible
combinations.

16 / 24

Extensions 3.3 Colorings

Finding χ(G)

Theorem
For any (simple, connected) graph G: χ(G)≤∆(G) + 1.

Proof by induction on number of vertices n
n = 1: trivial as χ = 1 and ∆ = 0.
Assume OK for k > 0 and consider G with |V (G)|= k + 1.
Consider v ∈ V with δ (v) = ∆(G). G∗ = G−v ⇒ exists c-vertex
coloring C∗ of G∗ with χ(G∗) = c ≤∆(G∗) + 1.
∆(G) = ∆(G∗)⇒ worst case c = ∆(G∗) + 1.
|N(v)|= ∆(G) = c−1⇒ there is a color left over that we can use
for v .
∆(G) > ∆(G∗)⇒ introduce new color for v and at worst
χ(G) = χ(G∗) + 1≤∆(G∗) + 2≤∆(G) + 1.

17 / 24

Extensions 3.3 Colorings

Finding χ(G)

Theorem
For any (simple, connected) graph G: χ(G)≤∆(G) + 1.

Proof by induction on number of vertices n
n = 1: trivial as χ = 1 and ∆ = 0.
Assume OK for k > 0 and consider G with |V (G)|= k + 1.
Consider v ∈ V with δ (v) = ∆(G). G∗ = G−v ⇒ exists c-vertex
coloring C∗ of G∗ with χ(G∗) = c ≤∆(G∗) + 1.
∆(G) = ∆(G∗)⇒ worst case c = ∆(G∗) + 1.
|N(v)|= ∆(G) = c−1⇒ there is a color left over that we can use
for v .
∆(G) > ∆(G∗)⇒ introduce new color for v and at worst
χ(G) = χ(G∗) + 1≤∆(G∗) + 2≤∆(G) + 1.

17 / 24

Extensions 3.3 Colorings

Finding χ(G)

Theorem
For any (simple, connected) graph G: χ(G)≤∆(G) + 1.

Proof by induction on number of vertices n
n = 1: trivial as χ = 1 and ∆ = 0.
Assume OK for k > 0 and consider G with |V (G)|= k + 1.
Consider v ∈ V with δ (v) = ∆(G). G∗ = G−v ⇒ exists c-vertex
coloring C∗ of G∗ with χ(G∗) = c ≤∆(G∗) + 1.
∆(G) = ∆(G∗)⇒ worst case c = ∆(G∗) + 1.
|N(v)|= ∆(G) = c−1⇒ there is a color left over that we can use
for v .
∆(G) > ∆(G∗)⇒ introduce new color for v and at worst
χ(G) = χ(G∗) + 1≤∆(G∗) + 2≤∆(G) + 1.

17 / 24

Extensions 3.3 Colorings

Finding χ(G)

Theorem
For any (simple, connected) graph G: χ(G)≤∆(G) + 1.

Proof by induction on number of vertices n
n = 1: trivial as χ = 1 and ∆ = 0.
Assume OK for k > 0 and consider G with |V (G)|= k + 1.
Consider v ∈ V with δ (v) = ∆(G). G∗ = G−v ⇒ exists c-vertex
coloring C∗ of G∗ with χ(G∗) = c ≤∆(G∗) + 1.
∆(G) = ∆(G∗)⇒ worst case c = ∆(G∗) + 1.
|N(v)|= ∆(G) = c−1⇒ there is a color left over that we can use
for v .
∆(G) > ∆(G∗)⇒ introduce new color for v and at worst
χ(G) = χ(G∗) + 1≤∆(G∗) + 2≤∆(G) + 1.

17 / 24

Extensions 3.3 Colorings

Finding χ(G)

Theorem
For any (simple, connected) graph G: χ(G)≤∆(G) + 1.

Proof by induction on number of vertices n
n = 1: trivial as χ = 1 and ∆ = 0.
Assume OK for k > 0 and consider G with |V (G)|= k + 1.
Consider v ∈ V with δ (v) = ∆(G). G∗ = G−v ⇒ exists c-vertex
coloring C∗ of G∗ with χ(G∗) = c ≤∆(G∗) + 1.
∆(G) = ∆(G∗)⇒ worst case c = ∆(G∗) + 1.
|N(v)|= ∆(G) = c−1⇒ there is a color left over that we can use
for v .
∆(G) > ∆(G∗)⇒ introduce new color for v and at worst
χ(G) = χ(G∗) + 1≤∆(G∗) + 2≤∆(G) + 1.

17 / 24

Extensions 3.3 Colorings

Finding χ(G)

Theorem
For any (simple, connected) graph G: χ(G)≤∆(G) + 1.

Proof by induction on number of vertices n
n = 1: trivial as χ = 1 and ∆ = 0.
Assume OK for k > 0 and consider G with |V (G)|= k + 1.
Consider v ∈ V with δ (v) = ∆(G). G∗ = G−v ⇒ exists c-vertex
coloring C∗ of G∗ with χ(G∗) = c ≤∆(G∗) + 1.
∆(G) = ∆(G∗)⇒ worst case c = ∆(G∗) + 1.
|N(v)|= ∆(G) = c−1⇒ there is a color left over that we can use
for v .
∆(G) > ∆(G∗)⇒ introduce new color for v and at worst
χ(G) = χ(G∗) + 1≤∆(G∗) + 2≤∆(G) + 1.

17 / 24

Extensions 3.3 Colorings

Coloring planar graphs

Theorem
For any planar graph G, χ(G)≤ 4.

Observation
If this theorem holds, we should be able to color any map with only four
different colors.

Problem
Conjectured in 1852 and specific cases proved to hold.
Only in 1976 the theorem was proved to be true, but...
A computer program was needed:

Split problem into 2000 different cases
Write a program for each case separately
Were the programs correct?

18 / 24

Extensions 3.3 Colorings

Coloring planar graphs

Theorem
For any planar graph G, χ(G)≤ 4.

Observation
If this theorem holds, we should be able to color any map with only four
different colors.

Problem
Conjectured in 1852 and specific cases proved to hold.
Only in 1976 the theorem was proved to be true, but...
A computer program was needed:

Split problem into 2000 different cases
Write a program for each case separately
Were the programs correct?

18 / 24

Extensions 3.3 Colorings

Map coloring

19 / 24

Extensions 3.3 Colorings

Map coloring

20 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
Every planar graph has a vertex v with δ (v)≤ 5.

Proof
Consider only n ≥ 7 vertices (otherwise trivial);
m = |E(G)| ⇒ ∑v∈V (G) δ (v) = 2m.
Assume no vertex exists with δ (v)≤ 5⇒ 6n ≤ 2m.
G planar⇒m ≤ 3n−6⇒ 6n ≤ 6n−12. Contradiction.

21 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
Every planar graph has a vertex v with δ (v)≤ 5.

Proof
Consider only n ≥ 7 vertices (otherwise trivial);
m = |E(G)| ⇒ ∑v∈V (G) δ (v) = 2m.
Assume no vertex exists with δ (v)≤ 5⇒ 6n ≤ 2m.
G planar⇒m ≤ 3n−6⇒ 6n ≤ 6n−12. Contradiction.

21 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
Every planar graph has a vertex v with δ (v)≤ 5.

Proof
Consider only n ≥ 7 vertices (otherwise trivial);
m = |E(G)| ⇒ ∑v∈V (G) δ (v) = 2m.
Assume no vertex exists with δ (v)≤ 5⇒ 6n ≤ 2m.
G planar⇒m ≤ 3n−6⇒ 6n ≤ 6n−12. Contradiction.

21 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
Every planar graph has a vertex v with δ (v)≤ 5.

Proof
Consider only n ≥ 7 vertices (otherwise trivial);
m = |E(G)| ⇒ ∑v∈V (G) δ (v) = 2m.
Assume no vertex exists with δ (v)≤ 5⇒ 6n ≤ 2m.
G planar⇒m ≤ 3n−6⇒ 6n ≤ 6n−12. Contradiction.

21 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
Every planar graph has a vertex v with δ (v)≤ 5.

Proof
Consider only n ≥ 7 vertices (otherwise trivial);
m = |E(G)| ⇒ ∑v∈V (G) δ (v) = 2m.
Assume no vertex exists with δ (v)≤ 5⇒ 6n ≤ 2m.
G planar⇒m ≤ 3n−6⇒ 6n ≤ 6n−12. Contradiction.

21 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
For any planar graph G, χ(G)≤ 5.

Proof by induction on number of vertices n
n = 1: obviously true. Assume correct for all graphs with k > 1
vertices.
Consider G with k + 1 vertices. Let v have δ (v)≤ 5.
G∗ = G−v has k vertices⇒ exists 5 coloring with colors c1, . . . ,c5.
Not all colors used in N(v)⇒ assign unused color to v . Done.

22 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
For any planar graph G, χ(G)≤ 5.

Proof by induction on number of vertices n
n = 1: obviously true. Assume correct for all graphs with k > 1
vertices.
Consider G with k + 1 vertices. Let v have δ (v)≤ 5.
G∗ = G−v has k vertices⇒ exists 5 coloring with colors c1, . . . ,c5.
Not all colors used in N(v)⇒ assign unused color to v . Done.

22 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
For any planar graph G, χ(G)≤ 5.

Proof by induction on number of vertices n
n = 1: obviously true. Assume correct for all graphs with k > 1
vertices.
Consider G with k + 1 vertices. Let v have δ (v)≤ 5.
G∗ = G−v has k vertices⇒ exists 5 coloring with colors c1, . . . ,c5.
Not all colors used in N(v)⇒ assign unused color to v . Done.

22 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
For any planar graph G, χ(G)≤ 5.

Proof by induction on number of vertices n
n = 1: obviously true. Assume correct for all graphs with k > 1
vertices.
Consider G with k + 1 vertices. Let v have δ (v)≤ 5.
G∗ = G−v has k vertices⇒ exists 5 coloring with colors c1, . . . ,c5.
Not all colors used in N(v)⇒ assign unused color to v . Done.

22 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
For any planar graph G, χ(G)≤ 5.

Proof by induction on number of vertices n
n = 1: obviously true. Assume correct for all graphs with k > 1
vertices.
Consider G with k + 1 vertices. Let v have δ (v)≤ 5.
G∗ = G−v has k vertices⇒ exists 5 coloring with colors c1, . . . ,c5.
Not all colors used in N(v)⇒ assign unused color to v . Done.

22 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Theorem
For any planar graph G, χ(G)≤ 5.

Proof by induction on number of vertices n
n = 1: obviously true. Assume correct for all graphs with k > 1
vertices.
Consider G with k + 1 vertices. Let v have δ (v)≤ 5.
G∗ = G−v has k vertices⇒ exists 5 coloring with colors c1, . . . ,c5.
Not all colors used in N(v)⇒ assign unused color to v . Done.

22 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Proof cnt’d: assume all colors used for N(v)⇒ δ (v) = 5

Idea: Rearrange the colors in N(v) = {v1,v2, . . . ,v5}. Let col(vi) = ci .

Assume no (v1,v3)-path in G∗ with only c1,c3: Consider (v1,w)-paths
in G∗ colored with only c1,c3

For the induced subgraph H, we know that v3 6∈ V (H)
Also: N(v3)∩V (H) = /0.

Solution: interchange c1 and c3 in H⇒ use c1 for v .

23 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Proof cnt’d: assume all colors used for N(v)⇒ δ (v) = 5

Idea: Rearrange the colors in N(v) = {v1,v2, . . . ,v5}. Let col(vi) = ci .

Assume no (v1,v3)-path in G∗ with only c1,c3: Consider (v1,w)-paths
in G∗ colored with only c1,c3

For the induced subgraph H, we know that v3 6∈ V (H)
Also: N(v3)∩V (H) = /0.

Solution: interchange c1 and c3 in H⇒ use c1 for v .

23 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Proof cnt’d: assume all colors used for N(v)⇒ δ (v) = 5

v

v1

v2

v3

v4

v5

Assume there exists (v1,v3)-path P in G∗ with only c1,c3: Consider
cycle C = [v3,v ,v1,P]. C encloses v2, or otherwise v4 and v5⇒
no (v2,v4)-path with only colors c2,c4. Consider all (v2,w)-paths
with only colors c2,c4. Induce subgraph H ′ of G∗.

Solution: interchange colors c2 and c4 in H ′⇒ use c2 for v .

24 / 24

Extensions 3.3 Colorings

Simpler bounds for χ(G)

Proof cnt’d: assume all colors used for N(v)⇒ δ (v) = 5

v

v1

v2

v3

v4

v5

Assume there exists (v1,v3)-path P in G∗ with only c1,c3: Consider
cycle C = [v3,v ,v1,P]. C encloses v2, or otherwise v4 and v5⇒
no (v2,v4)-path with only colors c2,c4. Consider all (v2,w)-paths
with only colors c2,c4. Induce subgraph H ′ of G∗.

Solution: interchange colors c2 and c4 in H ′⇒ use c2 for v .

24 / 24

	Extensions
	3.1 Directed graphs
	3.2 Weighted graphs
	3.3 Colorings

