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analysis tools.
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Introduction

Observation

In real-world situations, graphs (or networks) may become very large,
making it difficult to (visually) discover properties = we need network
analysis tools.

Vertex degrees: Consider the distribution of degrees: how many
vertices have high degrees versus the number of vertices with low
degrees.

Distance statistics: Focus on where vertices are positioned in the
network: far away from each other, central in the network, etc.

Clustering: To what extent are my neighbors also adjacent to each
other?

Centrality: Are there vertices that are more important than others?



Network analysis 6.1 Vertex degree

Vertex degree
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Network analysis 6.1 Vertex degree

Vertex degree: Histogram

n =100, m = 300




Network analysis 6.1 Vertex degree

Vertex degree: Ranked histogram
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Network analysis 6.2 Distance statistics

Distance statistics

G is connected, d(u,v) is distance between vertices u and v: the
length of a shortest path between u and v.

Eccentricity ¢(u):  max{d(u,v)|ve V(G)}
Radius rad(G): min{e(u)lu e V(G)}
Diameter diam(G): max{d(u,v)|u,v € V(G)}
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Distance statistics

G is connected, d(u,v) is distance between vertices u and v: the
length of a shortest path between u and v.

Eccentricity ¢(u):  max{d(u,v)|ve V(G)}
Radius rad(G): min{e(u)lu e V(G)}
Diameter diam(G): max{d(u,v)|u,v € V(G)}

Note that these definitions apply to directed as well as undirected
graphs.




Path lengths

G is connected with vertex V; d(u) is average length of shortest paths
from u to any other vertex v:
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The average path length d(G):

d(G)ﬁfMgvd(u):M Y duv)
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Path lengths

Definition

The characteristic path length is the median over all d(u).




Path lengths

Definition
The characteristic path length is the median over all d(u).

The median over n nondecreasing values xq, Xo, ..., Xp:

@ nodd = X(n+1)/2
@ neven = (Xp/2 +Xp/241)/2

The median separates the higher values from the lower values into two
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Network analysis 6.2 Distance statistics

Path lengths

Definition
The characteristic path length is the median over all d(u).

The median over n nondecreasing values xq, Xo, ..., Xp:
@ nodd = X(ni1)/2
@ neven = (Xp/2 +Xp/241)/2

The median separates the higher values from the lower values into two
equally-sized subsets.

(3,4,4,6,0,6,1} = [0,1,3,4,4,6,6] = M = X7, 1)/2 = X4 = 4




Network analysis 6.2 Distance statistics

Example distance statistics

Vertex
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Clustering coefficient

Observation

Many networks show a high degree of clustering: my neighbors are
each other’s neighbors.
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Network analysis 6.3 Clustering coefficient

Clustering coefficient

Observation

Many networks show a high degree of clustering: my neighbors are
each other’s neighbors.

Note

An extreme case is formed by having all my neighbors be adjacent to
each other = neighbors form a complete graph.

What is the other extreme case?

10/22




Network analysis 6.3 Clustering coefficient

Clustering coefficient

G is simple, connected, undirected. Vertex v € V(G) with neighborset
N(v).
@ Let n, =|N(v)|.
Note: max. number of edges between neighbors is ().
@ Let my, is number of edges in subgraph induced by N(v):
my = [E(GIN(V)])I-
Clustering coefficient cc(v):

vy — 2. v H
co(v) & my/ () = n,,(nT—1) if §(v) > 1
undefined otherwise
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Network analysis 6.3 Clustering coefficient

Clustering coefficient

G is simple, connected and undirected.
Let V* &f fv e V(G)|S(v) > 1}.

Clustering coefficient CC(G) for G:

CC(G) &

1
" cc(v)
| V | VEZV*
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Network analysis 6.3 Clustering coefficient

Clustering coefficient: triangles

Definition

A triangle is a complete (sub)graph with exactly 3 vertices. A triple is a
(sub)graph with exactly 3 vertices and 2 edges.
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Network analysis 6.3 Clustering coefficient

Clustering coefficient: triangles

Definition
A triangle is a complete (sub)graph with exactly 3 vertices. A triple is a
(sub)graph with exactly 3 vertices and 2 edges.

Definition
G is simple and connected with na(G) distinct triangles and nx(G)

distinct triples. ‘
The network transitivity ©(G) f na(G)/na(G).

A triple at v: v is incident to both edges (“in the middle”). na(v) :
number of triples at v.




Network analysis 6.3 Clustering coefficient

Clustering coefficient: example

e
L,

Vertex: 1 2 3 4 5 6 7
cc: 1/3 0 1/3 undefined 1 1 1/3
na: 3 3 3 0 1 1 6

Vertex1 N(1)={2,5,7}; E(GIN(1)]) = (5,7) = cc(1) =
Triples at 1: G[{2,1,5}],G[{2,1,7}], G[{5,1,7}]

w|—=
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Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity

Let na(v) be the number of triangles of which v is member =

@ cc(v)= ’,’ﬁ((“f))
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Clustering coefficient versus transitivity

Let na(v) be the number of triangles of which v is member =

e cc(v) = —’;i((“f))

o m(v)=(°Y)
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Clustering coefficient versus transitivity

Let na(v) be the number of triangles of which v is member =
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Clustering coefficient versus transitivity

X

y
Gk = G[{Xd/, V17V27"'7Vk}] =

ce(u) = {

16/22



Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity

X X
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Gk = Gl{x,y,v1,Vo,...,V}]| =
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cc(u):{ if u= vy,
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Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity
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Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity

y y
Gk_ G[{X>}/> Vi, Vo, Vk}] =
) 1 if u=wy, Vi
ce(u k k 2 ;
(,(21):%4((“1):m fu=xoru=y

1 2 k®+k+4
CC(GY) = ——(2- = 1 k-1)= % lim CC(Gy) = 1
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Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity

Gk =G[{x,y,v1,v2,..., %} =

1 ifu=wvy,..., v
na(u) = )
! {@(;)):(@) it u=x.y
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Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity

Gk:G[{va’v“,VQv-'-avk}] =
ifu=wvy,..., v

]
na(u) = {(S(ZU)) — (k;”) ifu=x,y

nA(Gk) k 1 .
rm(u) 2.1 -k(k+1)+k k+2 mmd k)

7(Gk)
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Centrality

Are there any vertices that are more important than the others?
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Centrality

Are there any vertices that are more important than the others?

Definition

G is (strongly) connected. The center C(G) is the set of vertices with
minimal eccentricity:

C(G) & {v e V(G)|e(v) = rad(G)}
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Centrality

Are there any vertices that are more important than the others?

Definition

G is (strongly) connected. The center C(G) is the set of vertices with
minimal eccentricity:

C(G) & {v e V(G)|e(v) = rad(G)}

At the center means at minimal distance to the farthest node.

18/22




Network analysis 6.4 Centrality

Vertex centrality

Definition

G is (strongly) connected. The (eccentricity based) vertex centrality
ce(u) of u:
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Network analysis 6.4 Centrality

Vertex centrality

Definition

G is (strongly) connected. The (eccentricity based) vertex centrality
ce(u) of u:

The higher the centrality, the “closer” to the center of a graph.
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Network analysis 6.4 Centrality

Closeness

Definition
G is (strongly) connected. The closeness c¢(u) of u:

def 1
~ Yvevg d(u,v)

cc(u)
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Network analysis 6.4 Centrality

Closeness

Definition
G is (strongly) connected. The closeness c¢(u) of u:

def 1
~ Yvevg d(u,v)

How close is a vertex to all other nodes?

cc(u)

20/22



Network analysis 6.4 Centrality

Centrality: example

e
o,

Vertex: 1 2 3 4 5 6 7
e(u) 7 7 7 9 6 9 5
Yd(u,-) 21 22 27 32 24 37 29

cc(u): 0.048 0.045 0.037 0.031 0.042 0.027 0.034
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Network analysis 6.4 Centrality

Betweenness

Important vertices are those whose removal significantly increases the
distance between other vertices. Example: cut vertices.
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Betweenness

Important vertices are those whose removal significantly increases the
distance between other vertices. Example: cut vertices.

Definition
G is simple and (strongly) connected. S(x,y) is set of shortest paths

between x and y. S(x,u,y) C S(x,y) paths that pass through u.
Betweenness centrality cg(u) of u:

S(x,u,y)|
ca(u) &f [Stx,uy)l
a(W)= L sty
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