
Graph Theory and Complex Networks:
An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 05: Trees
Version: April 21, 2014



Trees 5.1/5.2 Fundamentals

Introduction

Definition
A connected graph without cycles is a tree.

Connector problem: Set up a communication infrastructure such that
the total costs are minimized.

Communication network: Set up an overlay network such that the total
costs from a source to all destinations are minimized.

1 Formalities
2 Spanning trees
3 Routing in communication networks
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Trees 5.1/5.2 Fundamentals

Fundamentals: characterization (1)

Theorem
For any connected (simple) graph G with n vertices and m edges,
n ≤m+1.

Proof by induction on m
m = 1⇒ n = 2⇒ OK. Consider G with k > 1 edges.
Assume G has a cycle C. Let e ∈ E(C) and G∗ = G−e.

G∗ is still connected
n = |V (G∗)| ≤ |E(G∗)|+1 = k −1+1 = k ≤ k +1.

Assume G is acyclic. Let P be a longest path in G, connecting
vertices u and w .

P is longest path⇒ δ (u) = δ (w) = 1
Let G∗ = G−u⇒ |E(G∗)|= |E(G)|−1 = k −1
|V (G∗)|= n−1≤ |E(G∗)|+1 = k ⇒ n ≤ k +1
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Trees 5.1/5.2 Fundamentals

Fundamentals: characterization (2)

Theorem
A connected graph G with n vertices and m edges for which n = m+1,
is a tree.

Proof by contradiction
Assume G contains a cycle C and let e ∈ E(C).
G∗ = G−e is connected
⇒ n = |V (G∗)| ≤ |E(G∗)|+1 = (m−1)+1 = m.
Contradicts fact that n = m+1. G must be acyclic, i.e., a tree.
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Trees 5.1/5.2 Fundamentals

Fundamentals: characterization (3)

Theorem
A graph G is a tree iff ∀u,v ∈ V (G) : ∃!(u,v)-path.
(Notation: ∃! means exists exactly one.)

Proof G tree⇒∀u,v ∈ V (G) : ∃!(u,v)-path

Let u,v ∈ V (G) and (u,v)-path P.
Assume another distinct (u,v)-path Q.
Let x be last vertex common to P and Q, and y first common one
succeeding x ⇒ have identified a cycle:
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Trees 5.1/5.2 Fundamentals

Fundamentals: characterization (3)

Proof ∀u,v ∈ V (G) : ∃!(u,v)-path⇒G is a tree

By contradiction: assume G is not a tree.
Note: G is connected.
G is connected, not a tree⇒ there exists a cycle
C = [v1,v2, . . . ,vn = v1].
∀vi ,vj ∈ V (C): there are two distinct paths:

Pi→j = [vi ,vi+1, . . . ,vj−1,vj ]
Pj→i = [vi ,vi−1, . . . ,vj+1,vj ]
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Trees 5.1/5.2 Fundamentals

Fundamentals

Theorem
An edge e of a graph G is a cut edge if and only if e is not part of any
cycle of G.

Proof e is not part of a cycle⇒ e is a cut edge of G

By contradiction: assume that e = 〈u,v〉 is not a cut edge⇒ u,v in
the same component in G−e.
∃(u,v)-path P in G−e.
But: P +e is a cycle in G. Contradiction.
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Trees 5.1/5.2 Fundamentals

Fundamentals

Proof e is cut edge⇒ e is not in any cycle of G

By contradiction: assume e = 〈u,v〉 was part of a cycle C.
Let x and y be in different components of G−e.
e is cut edge⇒∃(x ,y)-path P in G and e ∈ E(P).
Assume u precedes v when traversing from x to y .
P1 = (x ,u)-part of P, P2 = (v ,y)-part of P.
Note: C−e is (u,v)-path in G−e.
u∗ is first vertex common to P1 and C−e;
v∗ is first vertex common to P2 and C−e.

x P1−→ u∗ C−e−−−→ v∗ P2−→ y is an (x ,y)-path in G−e, contradicting that
x and y are in different components.
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Trees 5.1/5.2 Fundamentals

Fundamentals: characterization (4)

Theorem
A connected graph G is a tree if and only if every edge is a cut edge.

Proof
G is tree⇒∀e ∈ E(G) : e is cut edge: Let G be a tree and e ∈ E(G).

G contains no cycles⇒ e not contained in any cycle⇒ e is cut
edge.

∀e ∈ E(G) : e is cut edge⇒G is tree: Assume G contains a cycle
C⇒∀e ∈ E(C) : e is not a cut edge⇒ not every edge in G is a cut
edge, contradicting our starting-point.
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Trees 5.3 Spanning trees

Spanning tree

Definition
T ⊆G is a minimal spanning tree of G iff V (T ) = V (G) and
∑e∈E(T )w(e) is minimal.

Algorithm (Kruskal)
G is connected, weighted graph. ∀e ∈ E(G) : w(e) ∈ R. Choose edge
e1 with minimal weight.

1 Assume edges Ek = {e1,e2, . . . ,ek} have been chosen so far.
Choose next edge ek+1 ∈ E(G)\Ek such that:

(1) Gk+1 = G[{e1,e2, . . . ,ek ,ek+1}] is acyclic (but not necessarily
connected).

(2) ∀e ∈ E(G)\Ek : w(e)≥ w(ek+1).

2 Stop when no such edge ek+1 can be selected.
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Trees 5.3 Spanning trees

Example Kruskal’s algorithm
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Trees 5.3 Spanning trees

Correctness Kruskal’s algorithm

Theorem
Any spanning tree Topt of a weighted connected graph G constructed
by Kruskal’s algorithm has minimal weight.

Proof by construction and contradiction
Notation: ∀spanning T 6= Topt , ι(T ) smallest index i : ei 6∈ E(T ).
Assume Topt is not optimal. Let T be spanning with maximal ι(T ).
ι(T ) = k ⇒ e1,e2, . . . ,ek−1 ∈ E(T )∩E(Topt).
Note: T +ek contains a unique cycle C

12 / 24



Trees 5.3 Spanning trees

Correctness Kruskal’s algorithm

Theorem
Any spanning tree Topt of a weighted connected graph G constructed
by Kruskal’s algorithm has minimal weight.

Proof by construction and contradiction
Notation: ∀spanning T 6= Topt , ι(T ) smallest index i : ei 6∈ E(T ).
Assume Topt is not optimal. Let T be spanning with maximal ι(T ).
ι(T ) = k ⇒ e1,e2, . . . ,ek−1 ∈ E(T )∩E(Topt).
Note: T +ek contains a unique cycle C

12 / 24



Trees 5.3 Spanning trees

Correctness Kruskal’s algorithm

Theorem
Any spanning tree Topt of a weighted connected graph G constructed
by Kruskal’s algorithm has minimal weight.

Proof by construction and contradiction
Notation: ∀spanning T 6= Topt , ι(T ) smallest index i : ei 6∈ E(T ).
Assume Topt is not optimal. Let T be spanning with maximal ι(T ).
ι(T ) = k ⇒ e1,e2, . . . ,ek−1 ∈ E(T )∩E(Topt).
Note: T +ek contains a unique cycle C

12 / 24



Trees 5.3 Spanning trees

Correctness Kruskal’s algorithm

Theorem
Any spanning tree Topt of a weighted connected graph G constructed
by Kruskal’s algorithm has minimal weight.

Proof by construction and contradiction
Notation: ∀spanning T 6= Topt , ι(T ) smallest index i : ei 6∈ E(T ).
Assume Topt is not optimal. Let T be spanning with maximal ι(T ).
ι(T ) = k ⇒ e1,e2, . . . ,ek−1 ∈ E(T )∩E(Topt).
Note: T +ek contains a unique cycle C

12 / 24



Trees 5.3 Spanning trees

Correctness Kruskal’s algorithm

Theorem
Any spanning tree Topt of a weighted connected graph G constructed
by Kruskal’s algorithm has minimal weight.

Proof by construction and contradiction
Notation: ∀spanning T 6= Topt , ι(T ) smallest index i : ei 6∈ E(T ).
Assume Topt is not optimal. Let T be spanning with maximal ι(T ).
ι(T ) = k ⇒ e1,e2, . . . ,ek−1 ∈ E(T )∩E(Topt).
Note: T +ek contains a unique cycle C

12 / 24



Trees 5.3 Spanning trees

Correctness Kruskal’s algorithm

Theorem
Any spanning tree Topt of a weighted connected graph G constructed
by Kruskal’s algorithm has minimal weight.

Proof by construction and contradiction
Notation: ∀spanning T 6= Topt , ι(T ) smallest index i : ei 6∈ E(T ).
Assume Topt is not optimal. Let T be spanning with maximal ι(T ).
ι(T ) = k ⇒ e1,e2, . . . ,ek−1 ∈ E(T )∩E(Topt).
Note: T +ek contains a unique cycle C

12 / 24



Trees 5.3 Spanning trees

Correctness Kruskal’s algorithm

Theorem
Any spanning tree Topt of a weighted connected graph G constructed
by Kruskal’s algorithm has minimal weight.

Proof by construction and contradiction
Notation: ∀spanning T 6= Topt , ι(T ) smallest index i : ei 6∈ E(T ).
Assume Topt is not optimal. Let T be spanning with maximal ι(T ).
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Trees 5.3 Spanning trees

Correctness Kruskal’s algorithm

Proof by construction and contradiction (cntd)

Let ê ∈ {E(C)∩E(T )}\E(Topt).

ê ∈ E(C)⇒ T̂ = (T +ek )− ê is connected and spanning tree of G.
w(T̂ ) = w(T )+w(ek )−w(ê) with w(ê)≥ w(ek )

Implication: T̂ must be optimal.
However: ek ∈ E(T̂ )⇒ ι(T̂ )> ι(T ). Contradiction.
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Trees 5.4 Routing in communication networks

Routing

Basics
In a communication network, each node u maintains a routing table Ru
with Ru[i , j] = k meaning that messages from i to j should be
forwarded to neighbor k .

Issue
Messages to destination u should follow a path along a spanning tree
rooted at u.

Technically
We need to construct a spanning tree optimized for all (v ,u)-paths,
called a sink tree.
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Trees 5.4 Routing in communication networks

Dijkstra’s algorithm

Algorithm (Dijkstra, sink tree construction)
D is directed, weighted graph with nonnegative weights.
∀u : v ∈ St(u)⇒ shortest (v ,u)-path found.
∀v : L(v) = (L1(v),L2(v)) with

L1(v) : vertex succeeding v in shortest (v ,u)-path so far.
L2(v) : total weight (length) of that path.

Let Rt(u) = St(u)∪v∈St (u) N(v), with N(v) = {w |∃ arc 〈−−→w ,v〉}.
1 Initialize t ← 0; L(u)← (u,0); ∀v 6= u : L(v)← (−,∞); S0(u)←{u}.
2 ∀y ∈ Rt(u)\St(u), select x ∈ St(u) : L2(x)+w(〈−−→y ,x〉) is minimal.

Set L(y)←
(
x ,L2(x)+w(〈−−→y ,x〉)

)
.

3 Let z ∈ Rt(u)\St(u) : L2(z) is minimal. Set St+1(u)← St(u)∪{z}.
If St+1(u) = V (G), stop. Otherwise, t ← t +1, recompute Rt(u)
and repeat previous step.
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Trees 5.4 Routing in communication networks

Example: Dijkstra’s shortest path algorithm
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Trees 5.4 Routing in communication networks

Correctness of Dijkstra’s algorithm

Theorem
Applying Dijkstra’s algorithm vertex u ∈ V (D), each time a vertex z is
added to St(u), L2(z) corresponds to the shortest (z,u)-path in D.

Proof by contradiction
Let d(w ,u) be total weight of shortest (w ,u)-path.
Let z be first vertex added to St(u), such that L2(z)> d(z,u).
Note: L2(z)< ∞ (otherwise z would never have been added).
Let P be shortest (z,u)-path.
Let y be last vertex on P not in St(u), and x its successor (and
thus in St(u)).
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Trees 5.4 Routing in communication networks

Correctness of Dijkstra’s algorithm

z

y

x

u

S(u)

P

Note: L2(x) = d(x ,u) and L2(y)≤ L2(x)+w(〈−−→y ,x〉).
Also: y is on shortest (z,u)-path⇒ L2(y) = d(y ,u).
y was not selected at step t ⇒ L2(z)≤ L2(y).
Note: d(z,y)+d(y ,u) = d(z,u)
L2(z)≤ L2(y) = d(y ,u)≤ d(y ,u)+d(z,y) = d(z,u).
Contradiction.
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Trees 5.4 Routing in communication networks

Decentralized routing

Observation
In order to execute Dijkstra’s algorithm, each vertex should know the
topology of the entire network.

Alternative
Let nodes tell their neighbors on shortest paths to other nodes
discovered so far.

Observation
If a neighbor v of u knows about a path to w , and tells u, then u
discovers a path to w (namely via v ).
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Trees 5.4 Routing in communication networks

Bellman-Ford routing

Algorithm (Bellman-Ford)
Consider node vi . We proceed in rounds: in every round t, each
node evaluates its routing table Ri [j] = d t(i , j) with:

d0(i , j)←
{

0 if i = j
∞ otherwise

Every round, adjust d t(i , j) to:

d t+1(i , j)← min
k∈N(vi )

w(〈vi ,vk 〉)+d t(k , j)

With d t(i , j) thus denoting the total weight of optimal (vi ,vj)-path,
found by vi after t rounds.
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Example: Bellman-Ford

v1

v2

v3

v4

v5

v6

v7v0

2

7 1

1

6

4

3

5 4

2

3

Destination
v0 v1 v2 v3 v4 v5 v6 v7

v0 : (0,v0) (3,v2) (1,v3) (6,v4)

v1 : (0,v1) (2,v2) (7,v3)

v2 : (3,v0) (2,v1) (0,v2) (1,v5)

v3 : (1,v0) (7,v1) (0,v3) (4,v6)

v4 : (6,v0) (0,v4) (5,v5) (3,v6)

v5 : (1,v2) (5,v4) (0,v5) (4,v7)

v6 : (4,v3) (3,v4) (0,v6) (2,v7)

v7 : (4,v5) (2,v6) (0,v7)
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Example: Bellman-Ford after 2 rounds

v1

v2
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v4

v5

v6

v7v0
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6

4

3

5 4

2

3

Destination
v0 v1 v2 v3 v4 v5 v6 v7

v0 : (0,v0) (5,v2) (3,v2) (1,v3) (6,v4) (4,v2) (5,v3)

v1 : (5,v2) (0,v1) (2,v2) (7,v3) (3,v2) (11,v3)

v2 : (3,v0) (2,v1) (0,v2) (4,v0) (6,v5) (1,v5) (5,v5)

v3 : (1,v0) (7,v1) (4,v0) (0,v3) (7,v0) (4,v6) (6,v6)

v4 : (6,v0) (6,v5) (7,v6) (0,v4) (5,v5) (3,v6) (5,v6)

v5 : (4,v2) (3,v2) (1,v2) (5,v4) (0,v5) (6,v7) (4,v7)

v6 : (5,v3) (11,v3) (4,v3) (3,v4) (6,v7) (0,v6) (2,v7)

v7 : (5,v5) (6,v6) (5,v6) (4,v5) (2,v6) (0,v7)
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Trees 5.4 Routing in communication networks

A note on efficiency

Observation
Dijkstra’s algorithm roughly requires each node to inspect every other
node once, implying a total of approximately n2 steps.

The Bellman-Ford algorithm requires that for each node we inspect
exactly the tables of each of its neighbors. Because we have
∑δ (v) = 2m with m the number of edges, there are a total of roughly
n ·m steps.
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