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Directed graph

Idea: extend graphs by letting edges have an explicit direction:

@ Representing one-way streets in a street plan

@ Expressing asymmetry in social relationships (Alice likes Bob:

A— B)
@ Expressing asymmetry in communication networks
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Directed graph

Idea: extend graphs by letting edges have an explicit direction:

@ Representing one-way streets in a street plan

@ Expressing asymmetry in social relationships (Alice likes Bob:
A— B)

@ Expressing asymmetry in communication networks

Definition
A directed graph or digraph D is a tuple (V, A) of vertices V, and a

collection of arcs A where each arc a= <ﬁ/) joins a vertex (tail) ue V

to another (not necessarily distinct) vertex (head) v.



Basic properties

Definition

For a vertex v of digraph D, the number of arcs with head v is called

the indegree 9j,(v) of v. The outdegree dout(Vv) is the number of arcs
having v as their tail.
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Definition
For a vertex v of digraph D, the number of arcs with head v is called

the indegree 9j,(v) of v. The outdegree dout(Vv) is the number of arcs
having v as their tail.

Theorem
VD : Yvev(p) 6in(V) = Xvev(p) Sout(V) = |A(D))|




Extensions 3.1 Directed graphs

Basic properties

Definition
For a vertex v of digraph D, the number of arcs with head v is called

the indegree 9j,(v) of v. The outdegree dout(Vv) is the number of arcs
having v as their tail.

Theorem
VD : Yvev(p) 6in(V) = Xvev(p) Sout(V) = |A(D))|

@ Every arcin D has exactly one head and one tail.

® Y cv(p)0in(v) is the same as counting all arc heads
® Y cv(p)Sout(V) is the same as counting all tails

@ Both are equal to the total number of arcs.
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Adjacency matrix

Vi Vo V3 Vg | )
vi | 1 1 0 0|2
vw| 0 0 1 0|1
vy | 1 1 0 0|2
va| O O 1 112
Y2 2 2 17

Observations

@ Adjacency matrix is not necessarily symmetric: in general,
Afi,j1 # Alj, ).

@ Adigraph D is strict iff A[i,j] <1 and A[i,i] =0.

@ Vv ZJA[I,j] = 80ut(vi) and Z/A[/, I] = 3,',7(V,').




Incidence matrix

M[i,j] =

—1
0

‘31 & a a2 as &g

ar
v/ O 1 -1 0 0 0 O
w| 0 -1 0 -1 1 0 O
vs| 0 0 1 1 -1 -1 0
vw| O 0O O O O 1 O

if vertex v; is the tail of arc a;

if vertex v; is the head of arc a;
otherwise
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Incidence matrix

a1 & a3 a a a a

by

vl O 1 -1 0 0 0 O
w| 0 -1 0 -1 1 0 O
wliO O 1 1 -1 -1 0
w| 0O O O O O 1 O

1 if vertex v; is the tail of arc a;
M[i,j]={ —1 if vertex v; is the head of arc g;
0  otherwise

Observation

Incidence matrices for digraphs cannot capture loops, making these
matrices being used less often compared to undirected graphs.



Extensions 3.1 Directed graphs

Connectivity

A directed (vg,Vk)-walk is an alternating sequence
[Vo, @0, V1,81, -, Vic_1, 8k—1, Vic] With & = (V;, Vi 1)
@ A directed trail is a directed walk with distinct arcs.
@ a directed path is a directed trail with distinct vertices.
@ a directed cycle is a directed trail with distinct vertices except for
Vo = V.




Extensions 3.1 Directed graphs

Connectivity

A directed (vg,Vk)-walk is an alternating sequence
[Vo, @0, V1,81, -, Vic_1, 8k—1, Vic] With & = (V;, Vi 1)
@ A directed trail is a directed walk with distinct arcs.
@ a directed path is a directed trail with distinct vertices.
@ a directed cycle is a directed trail with distinct vertices except for
Vo = V.

Definition

D is strongly connected if there exists a directed path between every
pair of distinct vertices from D. D is weakly connected if its underlying
(undirected) graph is connected.




Extensions 3.1 Directed graphs

Reachability

Definition
Vertex v is reachable from vertex u if there exists a directed (u, v)-path.
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Algorithm (Reachable vertices)

R:(u) is set of reachable vertices from u found after t steps.
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Definition
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Algorithm (Reachable vertices)

R:(u) is set of reachable vertices from u found after t steps.
Nout(V) is out-neighbors of v: Noyt(v) = {w € V(D)|EI<W> € A(D)}.

@ Sett+ 0 and Ry(u) + {u}.




Reachability

Definition
Vertex v is reachable from vertex u if there exists a directed (u, v)-path.

Algorithm (Reachable vertices)

R:(u) is set of reachable vertices from u found after t steps.
Nout(V) is out-neighbors of v: Noyt(v) = {w € V(D)|EI<W> € A(D)}.

@ Sett+ 0 and Ry(u) + {u}.
@ Construct the set Ry 1(u) + Ri(u)U <UV€,;,,(U) Nout(v)>.




Reachability

Definition
Vertex v is reachable from vertex u if there exists a directed (u, v)-path.

Algorithm (Reachable vertices)

R:(u) is set of reachable vertices from u found after t steps.

Nout(V) is out-neighbors of v: Noyt(v) = {w € V(D)|EI<W> € A(D)}.
@ Sett+« 0 and Ry(u) + {u}.

@ Construct the set Ry 1(u) + Ri(u)U <UV€,;,,(U) Nout(v)>.

Q I/fRii1(u) = Ri(u), stop: R(u) « R:(u). Otherwise, increment t
and repeat the previous step.




Strongly connected orientations

An orientation D(G) of an undirected graph G is a directed graph in
which edge from G has been assigned a direction.
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Strongly connected orientations

An orientation D(G) of an undirected graph G is a directed graph in
which edge from G has been assigned a direction.

Given G, how many orientations can you construct?

There exists an orientation D(G) for a connected undirected graph G
that is strongly connected if and only if A(G) > 2.




Strongly connected orientations

An orientation D(G) of an undirected graph G is a directed graph in
which edge from G has been assigned a direction.

Given G, how many orientations can you construct?

There exists an orientation D(G) for a connected undirected graph G
that is strongly connected if and only if A(G) > 2.

Proof: Strongly connected = A(G) > 2
By contradiction: assume that A(G) = 1.




Proof: A(G) > 2 = exists strongly conn. orientation

@ A(G) > 2= every edge lies on a cycle.
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Proof: A(G) > 2 = exists strongly conn. orientation

@ A(G) > 2= every edge lies on a cycle.
@ C=[vq,Vo,...,Vp,vi] = (V;,Vjy1) is replaced with arc (vj, v, 1);
(Vn,v1) by (v, v). If V(C) = V(G), stop.

Vi
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Proof: A(G) > 2 = exists strongly conn. orientation

@ A(G) > 2= every edge lies on a cycle.
@ C=[vq,Vo,...,Vp,vi] = (V;,Vjy1) is replaced with arc (vj, v, 1);
(Vn,v1) by (v, v). If V(C) = V(G), stop.

Vi1

@ V(C)# V(G). Let w¢ V(C). A(G) > 2 = there are two
edge-independent (w, vq)-paths P; and P,. Set orientation.
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Proof: A(G) > 2 = exists strongly conn. orientation

@ A(G) > 2= every edge lies on a cycle.
@ C=[vq,Vo,...,Vp,vi] = (V;,Vjy1) is replaced with arc (vj, v, 1);
(Vn,v1) by (v, v). If V(C) = V(G), stop.

Vii1 Vi

Vi //'\‘.W\SA
K= W2
\ .\
\
\
1
i /. w

A

3 W,

@ V(C)# V(G). Let w¢ V(C). A(G) > 2 = there are two
edge-independent (w, vq)-paths P; and P,. Set orientation.
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Proof: A(G) > 2 = exists strongly conn. orientation

@ A(G) > 2= every edge lies on a cycle.
@ C=[vq,Vo,...,Vp,vi] = (V;,Vjy1) is replaced with arc (vj, v, 1);
(Vn,v1) by (v, v). If V(C) = V(G), stop.

Vit Vi1

, ‘.W\SA
\\ o Wz
\\
\\
1
|
|

@ V(C)# V(G). Let w¢ V(C). A(G) > 2 = there are two
edge-independent (w, vq)-paths P; and P,. Set orientation.
@ Repeat until W= V(C)U V(Py)u V(P2) = V(G)
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Weighted graphs

Definition

In a weighted graph G each edge e has an associated real-valued
weight w(e) <eo. For HC G, W(H) = Lecg(H) W(€)-
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Weighted graphs

Definition

In a weighted graph G each edge e has an associated real-valued
weight w(e) <eo. For HC G, W(H) = Lecg(H) W(€)-

Important application: Finding the shortest path in a graph. Basic
idea:

@ Start with a set S={v}, and add vertex closest to vp.

@ Expand S by adding vertex closest to vy through one of the
vertices in S.
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Weighted graphs

Definition

In a weighted graph G each edge e has an associated real-valued
weight w(e) <eo. For HC G, W(H) = Lecg(H) W(€)-

Important application: Finding the shortest path in a graph. Basic
idea:
@ Start with a set S={v}, and add vertex closest to vp.

@ Expand S by adding vertex closest to vy through one of the
vertices in S.

@ Stop when there are no more vertices left.

10/24



Dijkstra’s algorithm

Vo 1 Vs
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Dijkstra’s algorithm

v, 3 1 Vs

vz 1 4 \3
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Dijkstra’s algorithm

Vo 1 Vs

V3 4 Ve v3(0,1) 4 Vo
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Dijkstra’s algorithm

V2 1 V5
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Dijkstra’s algorithm

Vo 1 Vs

vy(0,1) 4 Vo

vy(0,1) 4 Ve
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Dijkstra’s algorithm

Vo 1 Vs

vy(0,1) 4 Vo
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Dijkstra’s algorithm

Vo 1 Vs

v2(0,3) 1 V5(2,4)

w(0,1) 4 v w(0,1) 4 v
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Dijkstra’s algorithm

Vs

v(0,1) 4 v vi(0,1) 4 V6 5
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Dijkstra’s algorithm

v2(0,3) 1 V5(2,4)
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Dijkstra’s algorithm

v2(0,3) 4 V5(2,4)

v3(0,1) 4 v5(3,5)
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Dijkstra’s algorithm

v2(0,3) 4 V5(2,4)

v3(0,1) 4 v6(3,5)
1 V5(2,4) v2(03) 4 V5(2,4)
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Edge colorings

Basic idea

Assign colors to edges such that two edges incident to the same
vertex have different colors:

Y(u,v),(v,w) € E(G): col({u,v)) # col({v,w)).
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Edge colorings

Basic idea

Assign colors to edges such that two edges incident to the same
vertex have different colors:
¥(u,v), (v, w) € E(G) : col({u,v)) # col((v, w)).

Application

Consider n storage devices, but that we need to move data between
devices (e.g., to balance the load).

@ Represent each storage device by a vertex.

@ Divide all data into equally sized data blocks. R

@ If data block b needs to be moved from device i to j: add arc (i, ).
Note: we may have multiple arcs from i to j.
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Edge colorings: example

Problem

Can we devise a migration schedule that does the job as quickly as

possible, under the assumption that each device can move/accept only
one block at a time?
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Edge colorings: example

Problem

Can we devise a migration schedule that does the job as quickly as

possible, under the assumption that each device can move/accept only
one block at a time?

Device 1 Device 2

Device 3 Device 4
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Extensions 3.3 Colorings

Edge colorings: example

Problem

Can we devise a migration schedule that does the job as quickly as

possible, under the assumption that each device can move/accept only
one block at a time?

Device 1 Device 2 Device 1 Device 2

Device 3 Device 4 Device 3 Device 4
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Edge colorings: formalities

Definition

G, connected and loopless, is k-edge colorable if E(G) can be
partitioned into k disjoint sets Eq, ..., Ex such that
VE;: eq,e € E; = eq, e are not incident with the same vertex.

Edge chromatic number: minimal k for which G is k-edge colorable:
1'(G).
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VE;: eq,e € E; = eq, e are not incident with the same vertex.
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Theorem (Vizing)
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Edge colorings: formalities

Definition

G, connected and loopless, is k-edge colorable if E(G) can be
partitioned into k disjoint sets Eq, ..., Ex such that
VE;: eq,e € E; = eq, e are not incident with the same vertex.

Edge chromatic number: minimal k for which G is k-edge colorable:
1'(G).

Theorem (Vizing)

For any simple graph G, either x'(G) = A(G) or x'(G) = A(G) +1, with
A(G) = maxveV(G)S(V)

For all graphs we have x'(G) > A(G)
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Vertex colorings

Definition

G, simple and connected, is k-vertex colorable if V(G) can be
partitioned into k disjoint sets V4, ..., Vi such that
YV, Vx,y € Vit (x.y) ¢ E(G).

Chromatic number: minimal k for which G is k-vertex colorable: x(G).
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Vertex colorings

Definition

G, simple and connected, is k-vertex colorable if V(G) can be
partitioned into k disjoint sets V4, ..., Vi such that
YV, Vx,y € Vit (x.y) ¢ E(G).

Chromatic number: minimal k for which G is k-vertex colorable: x(G).

Problem

Finding x(G) is a notoriously difficult problem: no efficient general
solution exists, meaning we need to essentially try all possible
combinations.
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Finding x(G)

For any (simple, connected) graph G: x(G) < A(G)+1.

Proof by induction on nhumber of vertices n
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@ n=1:trivialas y =1and A=0.

@ Assume OK for k > 0 and consider G with |V(G)| = k+1.

@ Consider v e V with §(v) = A(G). G* = G— v = exists c-vertex
coloring C* of G* with x(G*) =c < A(G*)+1.

@ A(G)=A(G*)= worstcase c = A(G*)+1.
IN(v)| = A(G) = c—1 = there is a color left over that we can use
for v.
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Finding x(G)

For any (simple, connected) graph G: x(G) < A(G)+1.

Proof by induction on nhumber of vertices n

@ n=1:trivialas y =1and A=0.

@ Assume OK for k > 0 and consider G with |V(G)| = k+1.

@ Consider v e V with §(v) = A(G). G* = G— v = exists c-vertex
coloring C* of G* with x(G*) = ¢ < A(G*") +1.

@ A(G)=A(G*) = worst case c = A(G*) +1.
IN(v)| = A(G) = c—1 = there is a color left over that we can use
for v.

@ A(G) > A(G*) = introduce new color for v and at worst
x(G)=x(G)+1<A(G)+2<A(G)+1.
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Coloring planar graphs

For any planar graph G, x(G) < 4.

Observation
If this theorem holds, we should be able to color any map with only four
different colors.
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Coloring planar graphs

For any planar graph G, x(G) < 4.

Observation

If this theorem holds, we should be able to color any map with only four
different colors.

Problem
@ Conjectured in 1852 and specific cases proved to hold.
@ Only in 1976 the theorem was proved to be true, but...

@ A computer program was needed:

e Split problem into 2000 different cases
o Write a program for each case separately
o Were the programs correct?
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Map coloring
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Simpler bounds for x(G)

Every planar graph has a vertex v with §(v) <5.
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Simpler bounds for x(G)

Every planar graph has a vertex v with §(v) <5.

@ Consider only n> 7 vertices (otherwise trivial);
® m=|E(G)| = Lvev(g) 6(v) =2m.
@ Assume no vertex exists with 6(v) <5=6n<2m.
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Simpler bounds for x(G)

Every planar graph has a vertex v with §(v) <5.

@ Consider only n> 7 vertices (otherwise trivial);

® m=[E(G)| = Lvev(a) 6(v) =2m.

@ Assume no vertex exists with 6(v) <5=6n<2m.

@ Gplanar=m<3n—-6=6n<6n-—12. Contradiction.
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Simpler bounds for x(G)

For any planar graph G, x(G) <5.

22/24



Simpler bounds for x(G)

For any planar graph G, x(G) <5.

Proof by induction on humber of vertices n

22/24



Simpler bounds for x(G)

For any planar graph G, x(G) <5.

Proof by induction on humber of vertices n

@ n=1: obviously true. Assume correct for all graphs with k > 1
vertices.

22/24



Simpler bounds for x(G)

For any planar graph G, x(G) <5.

Proof by induction on humber of vertices n

@ n=1: obviously true. Assume correct for all graphs with k > 1
vertices.

@ Consider G with k+ 1 vertices. Let v have §(v) <5.

22/24



Simpler bounds for x(G)
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@ G*= G- v has k vertices = exists 5 coloring with colors ¢y, ..., Cs.
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Simpler bounds for x(G)

For any planar graph G, x(G) <5.

Proof by induction on humber of vertices n

@ n=1: obviously true. Assume correct for all graphs with k > 1
vertices.

@ Consider G with k+ 1 vertices. Let v have §(v) <5.
@ G*= G- v has k vertices = exists 5 coloring with colors ¢y, ..., Cs.
@ Not all colors used in N(v) = assign unused color to v. Done.

22/24



Extensions 3.3 Colorings

Simpler bounds for x(G)

Proof cnt’d: assume all colors used for N(v) = 6(v) =5

Idea: Rearrange the colors in N(v) = {vy,v»,...,vs}. Let col(v;) = c;.
Assume no (vq,v3)-path in G* with only ¢y, c3: Consider (vq,w)-paths
in G* colored with only ¢y, c3

@ For the induced subgraph H, we know that v3 ¢ V(H)
@ Also: N(vz)nV(H) =0.
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Extensions 3.3 Colorings

Simpler bounds for x(G)

Proof cnt’d: assume all colors used for N(v) = 6(v) =5

Idea: Rearrange the colors in N(v) = {vy,v»,...,vs}. Let col(v;) = c;.

Assume no (vq,v3)-path in G* with only ¢y, c3: Consider (vq,w)-paths
in G* colored with only ¢y, c3

@ For the induced subgraph H, we know that v3 ¢ V(H)
@ Also: N(vz)nV(H) =0.

Solution: interchange ¢y and ¢z in H = use ¢4 for v.
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Extensions 3.3 Colorings

Simpler bounds for x(G)

Proof cnt’d: assume all colors used for N(v) = 6(v) =5

v1

v3

Assume there exists (v1, v3)-path P in G* with only ¢;,c3: Consider
cycle C =[vs,Vv,vq,P]. C encloses v», or otherwise v4 and vs5 =
no ( vz, v4)-path with only colors ¢,,c4. Consider all (v», w)-paths
with only colors ¢y, ¢4. Induce subgraph H' of G*.
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v3

Assume there exists (v1, v3)-path P in G* with only ¢;,c3: Consider
cycle C =[vs,Vv,vq,P]. C encloses v», or otherwise v4 and vs5 =
no ( vz, v4)-path with only colors ¢,,c4. Consider all (v», w)-paths
with only colors ¢y, ¢4. Induce subgraph H' of G*.

Solution: interchange colors ¢, and ¢4 in H' = use ¢, for v.
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