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Network analysis

Introduction

In real-world situations, graphs (or networks) may become very large,
making it difficult to (visually) discover properties = we need network
analysis tools.

Vertex degrees: Consider the distribution of degrees: how many
vertices have high degrees versus the number of vertices with low
degrees.

Distance statistics: Focus on where vertices are positioned in the
network: far away from each other, central in the network, etc.

Clustering: To what extent are my neighbors also adjacent to each
other?

Centrality: Are there vertices that are more important than others?
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Network analysis 6.1 Vertex degree

Vertex degree
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Can you visually observe real (nonisomorphic) differences?
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Network analysis 6.1 Vertex degree

Vertex degree: Histogram
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Network analysis 6.1 Vertex degree

Vertex degree: Ranked histogram
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Network analysis 6.2 Distance statistics

Distance statistics

G is connected, d(u, v) is distance between vertices u and v: the
length of a shortest path between u and v.

Eccentricity ¢(u): max{d(u,v)|v e V(G)}
Radius rad(G): min{e(u)|lu e V(G)}
Diameter diam(G): max{d(u,v)|u,v € V(G)}

Note that these definitions apply to directed as well as undirected
graphs.
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Network analysis 6.2 Distance statistics

Path lengths

G is connected with vertex V; d(u) is average length of shortest paths

from u to any other vertex v:

d(u) &t Y du,v)

V] -1 ve V., v£u

The average path length d(G):
1
d(G def d(u,v
(@)% 4 LW =y L dey

ueV u,veV,u£v
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Path lengths

Definition
The characteristic path length is the median over all d(u).

The median over n nondecreasing values xi,Xxo, ..., Xn:
@ nodd = X(n+1)/2
@ neven = (Xp/2+ Xpj211)/2

The median separates the higher values from the lower values into two
equally-sized subsets.

v

{3,4,4,6,0,6,1} = [0,1,3,4,4,6,6] = M = X7, 12 = X4 = 4
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Example distance statistics

Vertex

Network analysis
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6.2 Distance statistics
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Network analysis 6.3 Clustering coefficient

Clustering coefficient

Observation

Many networks show a high degree of clustering: my neighbors are
each other’s neighbors.

Note

An extreme case is formed by having all my neighbors be adjacent to
each other = neighbors form a complete graph.

v

What is the other extreme case?
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Network analysis 6.3 Clustering coefficient

Clustering coefficient

G is simple, connected, undirected. Vertex v € V(G) with neighborset
N(v).
@ Let n, = |N(v)|.
Note: max. number of edges between neighbors is ().
@ Let m, is number of edges in subgraph induced by N(v):
my = [E(G[N(v)])].
Clustering coefficient cc(v):

v 2 % "
co(v) & my/("y) = nv(nT_1) if 5(v) > 1
undefined otherwise
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Network analysis 6.3 Clustering coefficient

Clustering coefficient

G is simple, connected and undirected.
Let V* &M fv e V(G)|8(v) > 1}.

Clustering coefficient CC( Q) for G:

CC(G) &f
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Network analysis 6.3 Clustering coefficient

Clustering coefficient: triangles

Definition

A triangle is a complete (sub)graph with exactly 3 vertices. A triple is a
(sub)graph with exactly 3 vertices and 2 edges.

G is simple and connected with na (G) distinct triangles and np(G)
distinct triples.

The network transitivity ©(G) % na(G)/na(G).

A triple at v: v is incident to both edges (“in the middle”). na(v) :
number of triples at v.

14/23



Network analysis 6.3 Clustering coefficient

Clustering coefficient: example
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Vertex: 1 2 3 4 5 6 7
CC: 1/3 0 1/3 undefined 1 1 1/3
Na: 3 3 3 0 1 1 6

Vertex 1 N(1)={2,5,7}; E(GIN(1)]) = (5,7) = cc(1) = 3
Triples at 1: G[{2,1,5}],G[{2,1,7}], G[{5,1,7}]
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Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity

Let na(v) be the number of triangles of which v is member =

@ Na(G) = 5 Lyev-Na(v) (Note: V*={ve V|5(v)>1})
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Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity
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Network analysis 6.3 Clustering coefficient

Clustering coefficient versus transitivity

Gk: G[{X,y,V~|,V2,..-,Vk}] ~

1 ifU:Vh--'aVk
na(U) = {(6(2U)) _ (’“2”) ifu=x,y

na(Gg) K 1
— im 7(G,) =
Zn/\(U) 2%k(k_|_1)_|_k k‘|‘2:>kl—>oof( k)

T(Gk) =
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Centrality

Are there any vertices that are more important than the others?

G is (strongly) connected. The center C( Q) is the set of vertices with
minimal eccentricity:

C(G) ¥ {v e V(G)|e(v) =rad(G)}

At the center means at minimal distance to the farthest node.
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Network analysis 6.4 Centrality

Vertex centrality

Definition

G is (strongly) connected. The (eccentricity based) vertex centrality
CE(U) of u:

CE(U) déf m

The higher the centrality, the “closer” to the center of a graph.

20/23



Network analysis 6.4 Centrality

Closeness

G is (strongly) connected. The closeness cq(u) of u:

1
co(u) &
c() Yvevig) d(u,v)

v

How close is a vertex to all other nodes?

21/23



Network analysis 6.4 Centrality

Centrality: example
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Vertex: 1 2 3 4 5 6 7
e(u) 7 7 7 9 6 9 5
Y d(u,-) 21 22 27 32 24 37 29

cc(u): 0.048 0.045 0.0837 0.031 0.042 0.027 0.034
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Betweenness

Important vertices are those whose removal significantly increases the
distance between other vertices. Example: cut vertices.

G is simple and (strongly) connected. S(x, y) is set of shortest paths

between x and y. S(x,u,y) C S(x,y) paths that pass through wu.
Betweenness centrality cg(u) of u:

S(x,u,y)|
cg(u) &t |
o= L Tsixy)
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