Graph Theory and Complex Networks:

An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science

Room R4.20, steen@cs.vu.nl

Chapter 04: Network traversal

Version: April 14, 2014

vrije Universiteit amsterdam .ﬁ)

Contents
Chapter Description
01: Introduction History, background
02: Foundations Basic terminology and properties of graphs
03: Extensions Directed & weighted graphs, colorings
04: Network traversal | Walking through graphs (cf. traveling)
05: Trees Graphs without cycles; routing algorithms
06: Network analysis Basic metrics for analyzing large graphs
07: Random networks Introduction modeling real-world networks
08: Computer networks | The Internet & WWW seen as a huge graph
09: Social networks Communities seen as graphs

Network traversal Network traversal

Introduction

Algorithms that allow one to through a network

@ Euler tours: visit every edge exactly once.

@ Hamilton cycles: visit every vertex exactly once.

4.1. Euler tours

Can one walk through the city and cross each of the seven bridges
exactly once?

4.1. Euler tours

Modeling the problem in terms of graphs

v0

e0 el e2 el

v v3

V2

Network traversal 4.1. Euler tours

Euler tours

A tour of a graph Gis a (u, v)-walk in which u=v (i.e., it is a closed
walk) and that traverses each edge in G. An Euler tour is a tour in
which all edges are traversed exactly once.

Related: Chinese postman problem

@ So called because originally formulated by a Chinese
mathematician.

@ Issue: Schedule the round of a postman such that (1) all streets
are passed at least once and (2) the total traveled distance is
minimal.

@ Solution: Extend map of streets to a Eulerian graph with minimal
weight.

Network

4.1. Euler tours

Network trav

4.1. Euler tours

4.1. Euler tours

28

Network traversal 4.1. Euler tours Network traversal 4.1. Euler tours

Necessary and sufficient conditions

A connected graph G (with more than one vertex) has an Euler tour iff

it has no vertices of odd degree.

Proof: Euler tour = no odd-degree vertices

@ Let C be an Euler tour starting/ending in vertex v. Let u # v

o ue V(C), VWi, u) € E(C): 3(u, Wour) € E(C).

@ Every edge is traversed exactly once = unique pairing of edges

(Wi, u) and (U, Wout)

@ §(u) must be even.

Network traversal 4.1. Euler tours Network traversal 4.1. Euler tours

Necessary and sufficient conditions

Proof: no odd-degree vertices = exists Euler tour

@ Select v and construct trail P until you need to cross an edge for

the second time. Let P end in w.

@ Assume w # v = entered w once more than left it = 6(w) is odd.

Contradiction. Hence P must end in v.

@ E(P)=E(G) = done. Assume E(P) C E(G):

o Let u e V(P) be incident with edges not in P. Consider

H= GIE(G) - E(P)].
e Vx e V(P):3(x)iseven =Vxec V(H):d(x)is even.

o Let u lie in component H' = construct similar largest trail P’
e P+« PUP' and repeat until E(P) = E(G).

8/28

Network traversal 4.1. Euler tours Network traversal 4.1. Euler tours

Fleury’s algorithm

Algorithm (Fleury)

Consider an Eulerian graph G.

@ Choose an arbitrary vertex vy € V(G) and set Wp = v.

@ Assume that we have constructed a trail

Wi = [vo, €1, V1, €2, Va,..., ek, Vk]. Choose an edge

€k+1 = (Vk, Vkr1) from E(G)\E(Wy) such that, preferably, e+ is

not a cut edge of the induced subgraph G = G — E(W).

© We now have a trail Wy.,1. If there is no edge ey o = Vi1, Vki2)

to select from E(G)\E(Wk.1), stop. Otherwise, repeat the

previous step.

Network traversal 4.1. Euler tours

Fleury’s algorithm

ar
S8E

1
St

0

Network traversa

4.1. Euler tours

10/28 10/28
4.1. Euler tours Network traversal 4.1. Euler tours
Chinese postman problem
Problem as a graph
Model city plan as a weighted graph:
@ junction as a vertex
@ street as edge, length represented by weight
Find a closed walk with minimal total weight.
Observation
We need to possibly make G Eulerian first by adding edges leading to
G* such that ¥ ec£(G+)\£(c) W(€) is minimal.
Why may this be so difficult?
11/28 11/28
4.1. Euler tours Network travers: 4.1. Euler tours
Postman: example
& ki OGNS o ==L Fegakindih |
% i g Tebsictios L . e J
= Plantsoen Planiseen i /’ //
\ S 5 /s
=\ s
A\
)
v A
g) e M} .

Network traversal 4.1. Euler tours Network traversal 4.1. Euler tours

Postman: algorithm

Consider a weighted, connected graph G with odd-degree vertices

Vodd = {Vv1,..., ok} where k > 1.

@ For each pair of distinct odd-degree vertices v; and v;, find a

minimum-weight (v;, v;)-path P;;.

@ Construct a weighted complete graph on 2k vertices in which

vertex v; and v; are joined by an edge having weight w(P;;).

© Find the set E of k edges ey, ..., e such that ¥ w(e;) is minimal
and no two edges are incident with the same vertex.

© For each edge e € E, with e = (v, v;), duplicate the edges of P;; in

graph G.

13/28

Network traversal 4.1. Euler tours Network traversal 4.1. Euler tours

Postman: algorithm example

3
~
v3 4 v4

P1.2 = [V17 V2] (weight: 3) P2.3 = [Vg., Uz, Us, Uy, V3] (Welght 5)
P13 = [v1, Uz, v3] (weight: 3) P24 = [v2, Ug, va] (weight: 2)
,Us, Us, va] (weight: 4)

P14 = [v1,uy,Us, v4] (weight: 5) P34 = [v3

Network traversal 4.1. Euler tours Network traversal 4.1. Euler tours

Postman: algorithm example

/,%\

15/28

Network traversal 4.2. Hamilton cycles Network traversal 4.2. Hamilton cycles

Hamilton cycles

A Hamilton path of a connected graph G is a path that contains every
vertex of G. A Hamilton cycle is a cycle containing every vertex of G.

G is called Hamiltonian if it has a Hamilton cycle.

Important note

There is no known efficient algorithm to determine whether a graph is
Hamiltonian. Yet, finding Hamilton cycles is important: Traveling
Salesman Problem (TSP).

4.2. Hamilton cycles Network traversal 4.2. Hamilton cycles
TSP: Example

Drilling holes: Consider a board for electrical circuits. To fasten the

components, we need to drill holes. Issue: Which track should the

drilling machine follow?

17/28 17/28

TSP: Example

18/28 18/28

Network traversal 4.2. Hamilton cycles

TSP: Example

s

Network traversal 4.2. Hamilton cycles

Some formal properties

G Hamiltonian = ¥S C V(G),S#0: o(G—-S) <|S|.

19/28

@ Let C be a Hamilton cycle = every vertex is visited exactly once
=0(C-S)<|S|.
o V(C)=V(G)= 0o(G—-S)<w(C-2S).

S S, S,

Network traversal 4.2. Hamilton cycles

Some formal properties: Dirac

Theorem (Dirac)

20/28

G is simple with n > 3 vertices and Vv : §(v) > n/2 = G is Hamiltonian.

Network traversal 4.2. Hamilton cycles

Network traversal 4.2. Hamilton cycles

Network traversal 4.2. Hamilton cycles

20/28

Proof: by induction

@ For n= 3 vertices: trivial. Assume the theorem has been proven

correct for graphs with k > 3 vertices.

@ Let G have k + 1 vertices, constructed from any graph G* with k
vertices, by adding a vertex v and joining u to at least (k+1)/2
other vertices.

@ Let C* =[vy,Vs,..., V] be a Hamilton cycle in G*.

@ Vertex u is joined to at least (k+ 1)/2 vertices from C*
= there is at least a pair v; and v;, 1 that are adjacent in C*

@ Construct a new cycle C = [vy,...,V;,U, Vi1, V]

21/28

Network traversal 4.2. Hamilton cycles 4.2. Hamilton cycles
Finding Hamilton cycles

Brute force: Select a vertex v, and explore all possible Hamilton paths

originating from v, and check whether they can be expanded to a

cycle:
2
1 3
5 4
22/28
Network traversal 4.2. Hamilton cycles Network traversal 4.2. Hamilton cycles

Posa: applying rotational transformations

Algorithm (Posa)

Randomly select u € V(G), forming the starting point of path P. Let
last(P) = u denote the current end point of P.

@ Randomly select v € N(last(P)), such that

@ Preferably, v ¢ V(P)

@ Ifv e V(P)= v has not been previously selected as neighbor of an

end point before.

If no such vertex exists, stop.

Q Ifvg V(P), set P« P+ (last(P),v).

23/28

Posa: applying rotational transformations

Algorithm (Posa - cntd)

@ Ifv e V(P), apply a rotational transformation of P using edge

(last(P),v):
u \ X w u v X w
*—>e oe—>re- *—>e (3 *—>e o< --0<—0

leading to P*. If last(P*) has not yet been end point for paths of

the current length, P < P*.

@ V(P)= V(G) and (u,last(P)) € E(G) = found a Hamilton cycle.

Otherwise, continue with step 1.

Network tre 4.2. Hamilton cycles

Posa example

25/28

Network traversal 4.2. Hamilton cycles

Optimal Hamilton cycle

Basic idea

We want to find a Hamilton cycle with minimal weight = extend graph
to a complete one in which distance between two vertices reflects
real-world distance.

(a) Start with an

arbitrary cycle
(b) If swapping
edges improve
w "o g ot

weight = better
cycle

(@) (b)

Network traversal 4.2. Hamilton cycles

Hamilton example: China

71,000 cities, 4,566,563 edges < 0.024% longer than optimal one.

27/28

Network tr:

4.2. Hamilton cycles

25/28
Network tr: 4.2. Hamilton cycles

26/28
Network tr. 4.2. Hamilton cycles

27/28

Network tr: 4.2. Hamilton cycles

1,904,711 cities, 7,516,353,779 edges < 0.076% longer than optimal one.

28/28 28/28

